The 2022 GCOS ECVs Requirements

GCOS – 245

2022 edition – Updated in 2025

The 2022 GCOS ECVs Requirements

© World Meteorological Organization, 2022

The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to:

Chair, Publications Board

World Meteorological Organization (WMO)

7 bis, avenue de la Paix

P.O. Box 2300

CH-1211 Geneva 2, Switzerland

Tel.: +41 (0) 22 730 84 03

E-mail: Publications@wmo.int

NOTE

The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.

The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members.

This publication has been issued without formal editing.

PUBLICATION TRACK RECORD

The table below describes the amendments that have been done to the text.

All Amendments done in March 2025 by GCOS Secretariat following Decision by GCOS SC-31 (D31/4).

Page	Section /Table	Description	Parameter changed	Amendment
1	Introduction	New box to give some ex	planations on the	requirements.
60	Table 2.3.6	Relative Humidity in the Upper Troposphere and Lower Stratosphere	Note	New sentence added: "Relative humidity in climate projections is close to a conservative tracer, and thus changes very little. Therefore, to monitor Relative Humidity in a manner that is useful and informative to climate change, we require low uncertainty in trends."
116	Table 4.7.1	Regional Mean Sea Level	Stability	G: 0.3 to <0.1 T: < 0.1 to 0.3
176	Table 5.6.2	Water Leaving Radiance	Unit	Added "dimensionless"
198	Table 7.4.1	Surface Soil Moisture	Required Measurement Uncertainty	" (1 sigma) " added New text: "Required Measurement Uncertainty (1 sigma)"
205, 206	Table 8.1.1	Area Covered by Snow Entire table replaced by an improved version	All the parameters	New table added
207, 208	Table 8.1.2	Snow Depth Entire table replaced by an improved version	All the parameters	New table added
209, 210	Table 8.1.3	Snow-Water Equivalent Entire table replaced by an improved version	All the parameters	New table added
235, 236	Table 9.4.1	Burned Area	Required Measurement Uncertainty	 "%" to "% or m²" "Average omission and commission errors" to "Twice the estimated standard deviation of the burned total as a % of the total" G: 5% to 10% B: 15% to 20% T: 5% to 40%
237, 238	Table 9.4.2	Active Fires	Required Measurement Uncertainty	"Average omission and commission errors" to "Estimation of detection confidence in a probability scale" G: 5% to 95% B: 5% to 80% T: 5% to 75%
251, 252	Table 9.8.1	Leaf Area Index (LAI)	Horizontal Resolution Temporal Resolution	M to m D to d

TABLE OF CONTENTS

I.	Introduction	1
II.	Evolution of ECVS Requirements	2
III.	ECVs requirements Tables	7
Atmosp	pheric ECVs	8
1.	Surface	9
1.1	ECV: Air Pressure	9
1.1.1	ECV product: Atmospheric Pressure (near surface)	9
1.2	ECV: Surface Temperature1	0
1.2.1	ECV Product: Air Temperature (near surface) 1	0
1.3	ECV: Surface Wind Speed and Direction 1	2
1.3.1	ECV Product: Wind Direction (near surface)1	2
1.3.2	ECV Product: Wind Speed (near surface) 1	3
1.3.3	ECV Product: Wind Vector (near surface)1	4
1.4	ECV: Surface Water Vapour1	5
1.4.1	ECV Product: Dew Point Temperature (near Surface)1	5
1.4.2	ECV Product: Relative Humidity (near surface)1	6
1.4.3	ECV Product: Air Specific Humidity (near surface)1	7
1.5	ECV: Precipitation	8
1.5.1	ECV Product: Accumulated Precipitation1	8
1.6	ECV: Surface radiation budget1	9
1.6.1	ECV Product: Upward Long-Wave Irradiance at Earth Surface 1	9
1.6.2	ECV Product: Downward Long-Wave Irradiance at Earth Surface 2	0
1.6.3	ECV Product: Downward Short-Wave Irradiance at Earth Surface 2	1
2.	Upper Air2	2
2.1	ECV: Upper-air temperature 2	2
2.1.1	ECV Product: Atmospheric Temperature in the Boundary Layer 2	2
2.1.2	ECV Product: Atmospheric Temperature in the Free Troposphere	4
2.1.3 Stratosp	ECV Product: Atmospheric Temperature in the Upper Troposphere and Lower phere	.6
2.1.4	ECV Product: Atmospheric Temperature in the Middle and Upper Stratosphere 2	8
2.1.5	ECV Product: Atmospheric Temperature in the Mesosphere	0
2.2	ECV: Upper-air wind speed and direction 3	2
2.2.1	ECV Product: Wind (horizontal) in the Boundary Layer	2
2.2.2	ECV Product: Wind (horizontal) in the Free Troposphere	4
2.2.3	ECV Product: Wind (horizontal) in the Upper Troposphere and Lower Stratosphere 3	6
2.2.4	ECV Product: Wind (horizontal) in the Middle and Upper Stratosphere 3	8
2.2.5	ECV Product: Wind (horizontal) in the Mesosphere 3	9
2.2.6	ECV Product: Wind (vertical) in the Boundary Layer 4	0
2.2.7	ECV Product: Wind (vertical) in the Free Troposphere	2
2.2.8	ECV Product: Wind (vertical) in the Upper Troposphere and Lower Stratosphere 4	4

2.2.9	ECV Product: Wind (vertical) in the Middle and Upper Stratosphere 4	16
2.2.10	ECV Product: Wind (vertical) in the Mesosphere 4	18
2.2.11	Figures5	50
2.3	ECV: Upper-air Water Vapour	55
2.3.1 Stratosp	ECV Product: Water Vapour Mixing Ratio in the Upper Troposphere and Lower	55
2.3.2	ECV Product: Water Vapour Mixing Ratio in the Middle and Upper Stratosphere 5	56
2.3.3	ECV Product: Water Vapour Mixing Ratio in the Mesosphere	57
2.3.4	ECV Product: Relative Humidity in the Boundary Layer	58
2.3.5	ECV Product: Relative Humidity in the Free Troposphere	59
2.3.6	ECV Product: Relative Humidity in the Upper Troposphere and Lower Stratosphere 6	50
2.3.7	ECV Product: Specific Humidity in the Boundary Layer	51
2.3.8	ECV Product: Specific Humidity in the Free Troposphere	52
2.3.9	ECV Product: Integrated Water Vapour	53
2.4	ECV: Earth radiation budget6	54
2.4.1	ECV Product: Radiation Profile	54
2.4.2	ECV Product: Solar Spectral Irradiance	55
2.4.3	ECV Product: Downward Short-Wave Irradiance at Top of the Atmosphere	56
2.4.4	ECV Product: Upward Short-Wave Irradiance at Top of the Atmosphere	57
2.4.5	ECV Product: Upward Long-Wave Irradiance at Top of the Atmosphere	58
2.5	ECV Cloud Properties	59
2.5.1	ECV Product: Cloud cover	59
2.5.2	ECV Product: Cloud Liquid Water Path 7	70
2.5.3	ECV Product: Cloud Ice Water Path	71
2.5.4	ECV Product: Cloud Drop Effective Radius	72
2.5.5	ECV Product: Cloud Optical Depth	73
2.5.6	ECV Product: Cloud Top Temperature	74
2.5.7	ECV Product: Cloud Top Height	75
2.6	ECV: Lightning	76
2.6.1	ECV Product: Schumann Resonances	76
2.6.2	ECV Product: Total lightning stroke density	77
3.	Atmospheric Composition	79
3.1	ECV: Greenhouse Gases	79
3.1.1	ECV Product: N ₂ O mole fraction	79
3.1.2	ECV Product: CO ₂ mole fraction	30
3.1.3	ECV Product: CO ₂ column average dry air mixing ratio	31
3.1.4	ECV Product: CH ₄ mole fraction 8	32
3.1.5	ECV Product: CH ₄ column average dry air mixing ratio	33
3.2	ECV: Ozone 8	34
3.2.1	ECV Product: Ozone mole fraction in the Troposphere	34
3.2.2	ECV Product: Ozone mole fraction in the Upper Troposphere/ Lower Stratosphere	
(UTLS)	8	36

3.2.3	ECV Product: Ozone mole fraction in the Middle and Upper Stratosphere	87
3.2.4	ECV Product: Ozone Tropospheric Column	88
3.2.5	ECV Product: Ozone Stratospheric Column	89
3.2.6	ECV Product: Ozone Total Column	90
3.3	ECV: Precursors (Supporting the aerosol and ozone ECVs)	91
3.3.1	ECV Product: CO Tropospheric Column	91
3.3.2	ECV Product: CO Mole fraction	92
3.3.3	ECV Product: HCHO Tropospheric Column	93
3.3.4	ECV Product: SO ₂ Tropospheric Column	94
3.3.5	ECV product: SO ₂ Stratospheric Column	95
3.3.6	ECV Product: NO ₂ Tropospheric Column	96
3.3.7	ECV Product: NO ₂ Mole Fraction	97
3.4	ECV: Aerosols Properties	98
3.4.1	ECV Product: Aerosol Light Extinction Vertical Profile (Troposphere)	98
3.4.2	ECV Product: Aerosol Light Extinction Vertical Profile (Stratosphere)	99
3.4.3	ECV Product: Multi-wavelength Aerosol Optical Depth	.100
3.4.4	ECV product: Chemical Composition of Aerosol Particles	.102
3.4.5	ECV Product: Number of Cloud Condensation Nuclei	.103
3.4.6	ECV Product: Aerosol Number Size Distribution	.104
3.4.7	ECV Product: Aerosol Single Scattering Albedo	.106
Occar		107
Ucean		101
4.	Physics	. 108
4. 4.1	Physics ECV: Sea-Surface Temperature	.108 .108
4. 4.1 4.1.1	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature	.108 .108 .108
4. 4.1 4.1.1 4.2	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature	.108 .108 .108 .108 .109
4. 4.1 4.1.1 4.2 4.2.1	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature. ECV: Subsurface Temperature. ECV Product: Interior Temperature	.108 .108 .108 .108 .109 .109
4. 4.1 4.1.1 4.2 4.2.1 4.3	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV: Subsurface Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity.	.108 .108 .108 .108 .109 .109 .111
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV: Subsurface Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity. ECV Product: Sea-surface Salinity.	.108 .108 .108 .109 .109 .111 .111
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity ECV: Sea-Surface Salinity ECV Product: Sea-surface Salinity	.108 .108 .108 .109 .109 .111 .111 .112
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity ECV: Sea-Surface Salinity ECV Product: Sea-surface Salinity ECV: Subsurface Salinity	.108 .108 .108 .109 .109 .111 .111 .112 .112
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV: Subsurface Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity ECV Product: Sea-surface Salinity ECV: Subsurface Salinity ECV: Subsurface Salinity ECV: Subsurface Salinity ECV: Sustrace Salinity	.108 .108 .108 .109 .109 .111 .111 .111 .112 .112 .113
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1	Physics ECV's Sea-Surface Temperature ECV Product: Sea-Surface Temperature. ECV Product: Sea-Surface Temperature. ECV Product: Interior Temperature ECV's Sea-Surface Salinity. ECV Product: Sea-surface Salinity. ECV's Subsurface Salinity. ECV's Subsurface Salinity. ECV's Subsurface Salinity. ECV's Sufface Salinity. ECV's Surface Currents. ECV's Surface Currents. ECV's Product: Ekman Currents.	.108 .108 .108 .109 .109 .111 .111 .112 .112 .112 .113 .113
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1 4.5.2	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV Product: Interior Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity ECV Product: Sea-surface Salinity ECV Product: Sea-surface Salinity ECV Product: Interior Salinity ECV Product: Interior Salinity ECV Product: Interior Salinity ECV Product: Surface Currents ECV Product: Surface Geostrophic Current	.108 .108 .108 .109 .109 .111 .111 .112 .112 .113 .113 .114
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1 4.5.2 4.6	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV: Subsurface Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity ECV: Sea-Surface Salinity ECV: Subsurface Salinity ECV: Subsurface Salinity ECV: Subsurface Currents ECV Product: Ekman Currents ECV Product: Surface Geostrophic Current ECV: Subsurface Currents	.108 .108 .108 .109 .109 .111 .111 .111 .112 .112 .113 .113 .114 .115
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1 4.5.2 4.6 4.6.1	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV: Subsurface Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity ECV: Sea-Surface Salinity ECV: Subsurface Salinity ECV: Subsurface Salinity ECV: Subsurface Salinity ECV: Surface Currents ECV Product: Ekman Currents ECV Product: Surface Geostrophic Current ECV: Subsurface Currents ECV: Subsurface Currents	.108 .108 .108 .109 .109 .111 .111 .112 .112 .113 .113 .114 .115 .115
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1 4.5.2 4.6 4.6.1 4.7	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV: Subsurface Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity ECV: Sea-Surface Salinity ECV: Subsurface Salinity ECV: Subsurface Salinity ECV: Subsurface Currents ECV Product: Ekman Currents ECV Product: Surface Geostrophic Current ECV: Subsurface Currents ECV: Subsurface Currents ECV Product: Vertical Mixing ECV: Sea Level	.108 .108 .108 .109 .109 .111 .111 .112 .112 .113 .113 .114 .115 .115 .116
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1 4.5.2 4.6 4.6.1 4.7 4.7.1	Physics Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV: Subsurface Temperature ECV: Subsurface Salinity ECV: Sea-Surface Salinity ECV: Subsurface Salinity ECV: Subsurface Salinity ECV: Subsurface Currents ECV Product: Ekman Currents ECV Product: Surface Geostrophic Current ECV: Subsurface Currents ECV: Sea Level ECV: Sea Level	.108 .108 .108 .109 .109 .111 .111 .112 .112 .113 .113 .114 .115 .115 .116 .116
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1 4.5.2 4.6 4.6.1 4.7 4.7.1 4.7.2	Physics ECV: Sea-Surface Temperature ECV Product: Sea-Surface Temperature ECV: Subsurface Temperature ECV: Subsurface Temperature ECV Product: Interior Temperature ECV: Sea-Surface Salinity ECV: Sea-Surface Salinity ECV: Subsurface Salinity ECV: Subsurface Salinity ECV: Subsurface Currents ECV Product: Ekman Currents ECV Product: Surface Geostrophic Current ECV: Subsurface Currents ECV: Product: Vertical Mixing ECV: Sea Level ECV: Sea Level ECV Product: Regional Mean Sea Level ECV Product: Global Mean Sea Level	.108 .108 .108 .109 .109 .111 .111 .112 .112 .112 .113 .113 .114 .115 .115 .116 .116 .117
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1 4.5.2 4.6 4.6.1 4.7 4.7.1 4.7.2 4.8	Physics. ECV: Sea-Surface Temperature	.108 .108 .108 .109 .109 .111 .111 .112 .112 .112 .113 .113 .114 .115 .116 .116 .116 .117 .118
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1 4.5.2 4.6 4.6.1 4.7 4.7.1 4.7.1 4.7.2 4.8 4.8.1	ECVsPhysicsECV: Sea-Surface TemperatureECV Product: Sea-Surface TemperatureECV: Subsurface TemperatureECV: Subsurface SalinityECV: Sea-Surface SalinityECV Product: Sea-surface SalinityECV Product: Interior SalinityECV Product: Surface CurrentsECV Product: Surface Geostrophic CurrentECV: Subsurface CurrentsECV Product: Vertical MixingECV: Sea LevelECV Product: Global Mean Sea Level.ECV: Sea StateECV Product: Wave Height	.108 .108 .108 .109 .109 .111 .111 .112 .112 .112 .113 .113 .114 .115 .115 .116 .116 .117 .118 .118
4. 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1 4.5.2 4.6 4.6.1 4.7 4.7.1 4.7.2 4.8 4.8.1 4.9	ECVsPhysics.ECV: Sea-Surface TemperatureECV Product: Sea-Surface Temperature.ECV: Subsurface Temperature.ECV: Subsurface TemperatureECV: Subsurface Salinity.ECV Product: Interior TemperatureECV: Sea-Surface Salinity.ECV: Subsurface Salinity.ECV: Subsurface Salinity.ECV Product: Interior Salinity.ECV: Surface Currents.ECV Product: Ekman CurrentsECV Product: Surface Geostrophic CurrentECV: Subsurface Currents.ECV Product: Vertical MixingECV: Sea Level.ECV Product: Global Mean Sea Level.ECV: Sea State.ECV Product: Wave Height.ECV: Ocean Surface Stress	.108 .108 .108 .109 .109 .111 .112 .112 .112 .113 .113 .114 .115 .115 .116 .116 .117 .118 .118 .119

4.10	ECV: Ocean Surface Heat Flux120
4.10.1	ECV Product: Radiative Heat Flux120
4.10.2	ECV Product: Sensible Heat Flux121
4.10.3	ECV Product: Latent Heat Flux122
4.11	ECV: Sea Ice123
4.11.1	ECV Product: Sea Ice Concentration123
4.11.2	ECV Product: Sea Ice Thickness124
4.11.3	ECV Product: Sea Ice Drift
4.11.4	ECV Product: Sea Ice Age127
4.11.5	ECV Product: Sea Ice Temperature129
4.11.6	ECV Product: Sea Ice Surface Albedo131
4.11.7	ECV Product: Snow Depth on Sea Ice133
5.	Biogeochemistry
5.1	ECV: Oxygen135
5.1.1	ECV Product: Dissolved Oxygen Concentration135
5.2	ECV: Nutrients
5.2.1	ECV Product: Silicate163
5.2.2	ECV Product: Phosphate164
5.2.3	ECV Product: Nitrate
5.3	ECV: Ocean Inorganic Carbon166
5.3.1	ECV Product: Total Alkalinity (TA)166
5.3.2	ECV Product: Dissolved Inorganic Carbon (DIC)167
5.3.3	ECV Product: pCO ₂
5.4	ECV: Transient tracers169
5.4.1	ECV Product: ¹⁴ C
5.4.2	ECV Product: SF6170
5.4.3	ECV Product: CFC-11171
5.4.4	ECV Product: CFC-12172
5.5	ECV: Ocean Nitrous Oxide N ₂ O173
5.5.1	ECV Product: Interior Ocean Nitrous Oxide N ₂ O173
5.5.2	ECV Product: N ₂ O Air-sea Flux174
5.6	ECV: Ocean Colour175
5.6.1	ECV Product: Chlorophyll-a175
5.6.2	ECV Product: Water Leaving Radiance
6.	Biosphere
6.1	ECV: Plankton177
6.1.1	ECV Product: Zooplankton Diversity177
6.1.2	ECV Product: Zooplankton Biomass178
6.1.3	ECV Product: Phytoplankton Diversity179
6.1.4	ECV Product: Phytoplankton Biomass180
6.2	ECV: Marine Habitat Properties181
6.2.1	ECV Product: Mangrove Cover and Composition181

6.2.2	ECV Product: Seagrass Cover (areal extent)	182
6.2.3	ECV Product: Macroalgal Canopy Cover and Composition	
6.2.4	ECV Product: Hard Coral Cover and Composition	184
Terres	strial ECVs	185
7.	Hydrology	
7.1	ECV: Groundwater	186
7.1.1	ECV Product: Groundwater Storage Change	186
7.1.2	ECV Product: Groundwater Level	188
7.2	ECV: Lakes	190
7.2.1	ECV Product: Lake Water Level (LWL)	190
7.2.2	ECV Product: Lake Water Extent (LWE)	191
7.2.3	ECV Product: Lake Surface Water Temperature (LSWT)	192
7.2.4	ECV Product: Lake Ice Cover (LIC)	193
7.2.5	ECV Product: Lake Ice Thickness (LIT)	194
7.2.6	ECV Product: Lake Water-Leaving Reflectance	195
7.3	ECV: River Discharge	196
7.3.1	ECV Product: River Discharge	196
7.3.2	ECV Product: Water Level	197
7.4	ECV: Soil moisture	198
7.4.1	ECV Product: Surface Soil Moisture	198
7.4.2	ECV Product: Freeze/Thaw	199
7.4.3	ECV Product: Surface Inundation	201
7.4.4	ECV Product: Root Zone Soil Moisture	202
7.5	ECV: Terrestrial Water Storage (TWS)	204
7.5.1	ECV Product: Terrestrial Water Storage Anomaly	204
8.	Cryosphere	205
8.1	ECV: Snow	205
8.1.1	ECV Product: Area Covered by Snow	205
8.1.2	ECV Product: Snow Depth	207
8.1.3	ECV Product: Snow-Water Equivalent	209
8.2	ECV: Glaciers	211
8.2.1	ECV Product: Glacier Area	211
8.2.2	ECV Product: Glacier Elevation Change	212
8.2.3	ECV Product: Glacier Mass Change	213
8.3	ECV: Ice Sheets and Ice Shelves	214
8.3.1	ECV Product: Surface Elevation Change	214
8.3.2	ECV Product: Ice Velocity	215
8.3.3	ECV Product: Ice Volume Change	216
8.3.4	ECV Product: Grounding Line Location and Thickness	217
8.4	ECV: Permafrost	218
8.4.1	ECV Product: Permafrost Temperature (PT)	218
8.4.2	ECV Product: Active Layer Thickness (ALT)	220

8.4.3	ECV Product: Rock Glacier Velocity (RGV)	221
9.	Biosphere	223
9.1	ECV: Above-Ground Biomass	223
9.1.1	ECV Product: Above-Ground Biomass (AGB)	223
9.2	ECV: Albedo	225
9.2.1 BHR wit	ECV Product: Spectral and Broadband (Visible, Near Infrared and Shortwave) DHR is the Associated Spectral Bidirectional Reflectance Distribution Function (BRDF)	& 225
	ECV: Evaporation from Land	225
9.5	ECV Product: Sensible Heat Flux	227
9.3.1	ECV Product: Latent Heat Flux	227
9.3.2	ECV Product: Bare Soil Evaporation	220
9.5.5	ECV Product: Interception Loss	230
0.2.5	ECV Product: Transpiration	237
9.5.5		234
9.4	ECV. File	230
9.4.1	ECV Product: Active Fires	220
9.4.2	ECV Product: Active Files	230
9.4.3	ECV Product: Fire Radiative Power (FRP)	240
9.5	ECV: Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)	241
9.5.1	ECV Product: Fraction of Absorbed Photosynthetically Active Radiation	241
9.6	ECV: Land Cover	243
9.6.1	ECV Product: Land Cover	243
9.6.2	ECV Product: Maps of High-Resolution Land Cover	245
9.6.3 Types	ECV Product: Maps of Key IPCC Land Classes, Related Changes and Land Managem	ent 247
9.7	ECV: Land Surface Temperature	249
9.7.1	ECV Product: Land Surface Temperature (LST)	249
9.7.2	ECV Product: Soil Temperature	251
9.8	ECV: Leaf Area Index	252
9.8.1	ECV Product: Leaf Area Index (LAI)	252
9.9	ECV: Soil carbon	254
9.9.1	ECV Product: Carbon in Soil	254
9.9.2	ECV Product: Mineral Soil Bulk Density	255
9.9.3	ECV Product: Peatlands	256
10.	ANTHROPOGENIC	257
10.1	ECV: Anthropogenic Greenhouse Gas Fluxes	257
10.1.1 Agricult	ECV Product: Anthropogenic CO2 Emissions from Fossil Fuel Use, Industry, ure, Waste and Products Use	257
10.1.2 Industri	ECV Product: Anthropogenic CH4 Emissions from Fossil Fuel, Waste, Agriculture, al Processes and Fuel Use	258
10.1.3	ECV Product: Anthropogenic N2O Emissions from Fossil Fuel Use, Industry,	259
	FCV Product: Anthronogenic E-Gas Emissions from Industrial Processes and Product	- J J t
Use	Lev rioduct. Anthropogenici Gas Emissions nom industrial riocesses and rioduct	260

10.1.5 ECV Product: Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition – National	261
10.1.6 ECV Product: Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition – Continental	262
10.1.7 ECV Product: Anthropogenic CO2 Emissions/Removals by Land Categories	263
10.1.8 ECV Product: High-Resolution Footprint Around Point Sources	264
10.2 ECV: Anthropogenic Water Use	265
10.2.1 ECV Product: Anthropogenic Water Use	265

I. INTRODUCTION

This document is a supplement to the 2022 GCOS Implementation Plan (GCOS-244) and presents the updated list of Essential Climate Variables (ECVs) requirements.

An ECV is a physical, chemical or biological variable (or group of linked variables) that critically contributes to the characterization of Earth's climate.

An ECV product, is a measurable parameter needed to characterize the ECV.

GCOS has asked its expert panels, informed by the wider community, to define requirements for the ECV products of all ECVs detailed in this document. A complete list of contributors is provided in GCOS-244 Appendix 3.

The requirements stated in this document are user-requirements for the climate application 'climate monitoring'. They represent what is required to be met by the totality of the observing system, not by any given component, to monitor the atmosphere, ocean and land for climate.

For example, the requirements for upper-air temperature might by met by a combination of:

- 1. Satellite radiance observations
- 2. GNSS-RO
- 3. Radiosondes
- 4. Ground-based remote sensing instruments

While none of these individual components can meet the requirements, the totality of the system could meet or exceed the requirements stated.

The requirements are expressed in terms of five criteria:

- 1. Spatial Resolution horizontal and vertical (if needed).
- 2. Temporal resolution (or frequency) the frequency of observations e.g. hourly, daily or annual.
- Measurement Uncertainty the parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand (GUM)¹. It includes all contributions to the uncertainty, expressed in units of 2 standard deviations, unless stated otherwise.
- 4. Stability The change in bias over time. Stability is quoted per decade.
- 5. Timeliness The time expectation for accessibility and availability of data.

In this Implementation Plan, for each of these criteria, a goal, breakthrough and threshold value are presented. These are defined as:

- Goal (G): an ideal requirement above which further improvements are not necessary.
- Breakthrough (B): an intermediate level between threshold and goal which, if achieved, would result in a significant improvement for the targeted application. The breakthrough value may also indicate the level at which specified uses within climate monitoring become possible. It may be appropriate to have different breakthrough values for different uses.
- Threshold (T): the minimum requirement to be met to ensure that data are useful.

For each ECV product, a definition and units are provided together with the requirements.

¹ https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6

II. EVOLUTION OF ECVS REQUIREMENTS

The ECV framework has evolved since the publication of the previous list of ECVs requirements in the GCOS IP 2016. The list of ECVs and ECVs products has changed as well, and the following table illustrates those changes.

Atmosphere				
ECV	ECV Product 2016	ECV Product 2022		
Surface Pressure	Pressure (surface)	Air Pressure (near surface)		
Surface Temperature	Temperature (surface)	Air Temperature (near surface)		
Surface wind		Wind Speed (near surface)		
Speed and	Surface wind Speed and Direction	Wind Direction (near surface)		
Direction		Wind Vector (near surface)		
		Dew Point Temperature (near surface)		
Surface Water	Water Vapour (surface)	Relative Humidity (near surface)		
vapoui		Air Specific Humidity (near surface)		
Precipitation	Estimates of Liquid and Solid Precipitation	Accumulated precipitation		
	Surface ERB Short-Wave	Downward Short-Wave Irradiance at Earth Surface		
Surface Radiation Budget	Surface ERB long-Wave	Downward Long-Wave Irradiance at Earth Surface		
		Upward Long-Wave Irradiance at Earth Surface		
	Tropospheric Temperature Profile	Atmospheric Temperature in the Boundary Layer		
llpper-air	Stratospheric Temperature Profile	Atmospheric Temperature in the Free Troposphere		
Temperature		Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere		
	Temperature of the Deep	Atmospheric Temperature in the Middle and Upper Stratosphere		
	Atmospheric Layers	Atmospheric Temperature in the Mesosphere		
		Wind (horizontal) in the Boundary Layer		
	Upper-Air Wind Retrievals	Wind (horizontal) in the Free Troposphere		
		Troposphere and Lower Stratosphere		
		Wind (horizontal) in the Middle and Upper		
Upper-air Wind		Stratosphere		
Speed and		Wind (horizontal) in the Mesosphere		
Direction		Wind (vertical) in the Boundary Layer		
		Wind (vertical) in the Upper Troposphere		
		and Lower Stratosphere		
		Wind (vertical) In the Middle and Upper		
		Stratosphere		
		Wind (vertical) in the Mesosphere		
		Troposphere and Lower Stratosphere		
	Tropospheric and Lower- Stratospheric profile of Water Vapour	Water Vapour Mixing Ratio in the Middle		
Upper-air Water		and Upper Stratosphere		
		Water Vapour Mixing Ratio in the		
		Relative Humidity in the Boundary Laver		

		Deletion (Description) and a Transmission
		Relative Humidity in the Free Troposphere
		Relative Humidity in the Upper
	Upper Tropospheric Humidity	Troposphere and Lower Stratosphere
		Specific Humidity in the Boundary Layer
		Specific Humidity in the Free Troposphere
	Total Column Water Vapour	Integrated Water Vapour
	Solar Spectral Irradiance	Solar Spectral Irradiance
		Downward Short-Wave Irradiance at Ton
	Total Solar Irradiance	of the Atmosphere
Farth Radiation	Top of the Atmosphere FRB Long-	Unward Long-Wave Irradiance at Top of
Budget	Wave	the Atmosphere
Duuget	Top of the Atmosphere EPB Short-	Unward Short-Waye Irradiance at Top of
	Wave	the Atmosphere
		Radiation Profile
	Cloud Amount	
		Cloud Liquid Water Dath
	Cloud Water Path (liquid and ice)	Cloud Liquid Water Path
		Cloud Ice Water Path
Cloud Properties	Cloud Effective particle radius	Cloud Drop Effective Radius
	(liquid and ice)	
	Cloud Optical Depth	Cloud Optical Depth
	Cloud Top Temperature	Cloud Top Temperature
	Cloud Top Pressure	Cloud Top Height
I falsta fa a	L'altra a	Total Lightning Stroke Density
Lightning	Lightning	Schumann Resonances
	Tropospheric CO ₂	CO ₂ Mole Fraction
Carbon Dioxide,	Tropospheric CO ₂ Column	CO ₂ Column Average Dry Air Mixing Patio
Methane and		
Other	Ctrotoopheric CI	CH ₄ Mole Fraction
Greenhouse	Stratospheric CH ₄	
Gases	Tropospheric CH ₄ Column	CH ₄ Column Average Dry Air Mixing Ratio
		N ₂ O Mole Fraction
	Troposphere Ozone	Ozone Mole Fraction in the Troposphere
	Ozone Profile in Upper and Lower	Ozone Mole Fraction in the Upper
	Stratosphere	Troposphere/ Lower Stratosphere
Ozone	Ozone Profile in Upper	Ozone Mole Fraction in the Middle and
020110	Stratosphere and Mesosphere	Upper Stratosphere
		Ozone Total Column
	Total Column Ozone	Ozone Tropospheric Column
		Ozone Stratospheric Column
	CO Tropospheric Column	CO Tropospheric Column
	CO Tropospheric Profile	CO Mole Fraction
Precursors		HCHO Tropospheric Column
(Supporting the	SO ₂ HCHO Tropospheric Columns	SO_2 Tropospheric Column
aerosol and	So ₂ , heno hopospherie columns	SO ₂ Stratospheric Column
ozone ECVs)	NO Transcriberic Column	
		NO ₂ Mole Fraction
		Aerosol Light Extinction Vertical Profile
	Aerosol Extinction Coefficient	(Iroposphere)
	Profile	Aerosol Light Extinction Vertical Profile
		(Stratosphere)
Aerosols	Aerosol Optical Depth	Multi-wavelength Aerosol Optical Depth
Properties	Single Scattering Albedo	Aerosol Single Scattering Albedo
	Aerosol Layer Height	
		Chemical Composition of Aerosol Particles
		Number of Cloud Condensation Nuclei
		Aerosol Number Size Distribution

Ocean		
ECV	ECV Product 2016	ECV Product 2022
Sea-Surface	Sea-Surface temperature	Sea-Surface temperature
Subsurface	Interior Temperature	Interior Temperature
Sea-Surface	Sea-Surface Salinity	Sea-Surface Salinity
Subsurface Salinity	Interior Salinity	Interior Salinity
Surface Currents	Surface Geostrophic Current	Surface Geostrophic Current Ekman Currents
Subsurface Currents	Interior Currents	Vertical Mixing
Sectored	Regional Sea Level	Regional Mean Sea Level
Sed Level	Global Mean Sea Level	Global Mean Sea Level
Sea State	Wave Height	Wave Height
Surface Stress	Surface Stress	Surface Stress
	Radiative Heat Flux	Radiative Heat Flux
Ocean Surface	Sensible Heat Flux	Sensible Heat Flux
neal riux	Latent Heat Flux	Latent Heat Flux
	Sea Ice Concentration	Sea Ice Concentration
	Sea Ice Thickness	Sea Ice Thickness
	Sea Ice Drift	Sea Ice Drift
Sea Ice	Sea Ice Extent/Edge	Sea Ice Age
		Sea Ice Surface Temperature (IST)
		Sea ice Surface Albedo
		Snow Depth on Sea Ice
Oxygen	Interior Ocean Oxygen Concentration	Dissolved Oxygen Concentration
	Interior Ocean Concentrations of	Silicate
Nutrients	Silicate Phosphate nitrate	Phosphate
	Sincace, Thosphace, Intrace	Nitrate
Ocean Inerganic	Interior Ocean Carbon Storage	Total Alkalinity (TA)
Carbon	(At least 2 of DIC TA or pH)	Dissolved Inorganic Carbon (DIC)
Carbon		pCO ₂
		¹⁴ C
Transignt Tracors	Interior Ocean CFC-11, CFC-12,	SF ₆
	SF ₆ , ¹⁴ C, tritium, ³ He, ³⁹ Ar	CFC-11
		CFC-12
Ocean nitrous	Interior Ocean Nitrous Oxide N ₂ O	Interior Ocean Nitrous Oxide N ₂ O
oxide N ₂ O	N ₂ O Air-Sea Flux	N ₂ O Air-Sea Flux
Occase Colour	Water Leaving Radiance	Water Leaving Radiance
Ocean Colour	Chlorophyll-a concentration	Chlorophyll-a concentration
		Zooplankton Diversity
	Zooplankton	Zooplankton Biomass
Plankton	Dischard and the se	Phytoplankton Diversity
	Phytopiankton	Phytoplankton Biomass
		Mangrove Cover and Composition
Marine Habitat	Coral Reefs, mangrove forests,	Seagrass Cover (areal extent)
Properties	seagrass beds, Macroalgal	Macroalgal Canopy Cover and Composition
		Hard coral cover and composition

Terrestrial				
ECV	ECV Product 2016	ECV Product 2022		
	Groundwater Volume Change	Groundwater Storage Change		
	Groundwater Level	Groundwater Level		
Constant and the	Groundwater Recharge			
Groundwater	Groundwater Discharge			
	Wellhead Level			
	Water Quality			
	Lake Water Level	Lake Water Level (LWL)		
	Water Extent	Lake Water Extent (LWE)		
	Lake Surface-Water Temperature	Lake Surface Water Temperature (LSWT)		
Lakes	Lake Ice Cover	Lake Ice Cover (LIC)		
	Lake Ice Thickness	Lake Ice Thickness (LIT)		
	Lake Colour (Lake Water-Leaving Reflectance)	Lake Water-Leaving Reflectance		
	River Discharge	River Discharge		
	Water Level	Water Level		
River Discharge	Flow Velocity			
	Cross-Section			
	Surface Soil Moisture	Surface Soil Moisture		
	Ereeze/Thaw Ereeze/Thaw			
Soil Moisture	Surface Inundation	Surface Inundation		
	Root-Zone Soil Moisture	Root Zone Soil Moisture		
Terrestrial Water Storage ²		Terrestrial Water Storage Anomaly		
	Area Covered by Snow	Area Covered by Snow		
Snow	Snow Depth Snow Depth			
	Snow-Water Equivalent	Snow-Water Equivalent		
	Glacier Area	Glacier Area		
Glaciers	Glacier Elevation Change	Glacier Elevation Change		
	Glacier Mass Change	Glacier Mass Change		
	Surface Elevation Change	Surface Elevation Change		
Ico Shoots and Ico	Ice Velocity	Ice Velocity		
Shelves	Ice Mass Change	Ice Volume Change		
	Grounding Line Location and Thickness	Grounding Line Location and Thickness		
	Thermal State of Permafrost	Permafrost Temperature (PT)		
Permafrost	Active Layer Thickness	Active Layer Thickness (ALT)		
		Rock Glacier Velocity (RGV)		
	Maps of FAPAR for Modelling	Fraction of Absorbed Photosynthetically		
Fraction of FAPAR	Maps of FAPAR for Adaptation	Active Radiation		
	Maps of LAI for Modelling			
Lear Area Index	Maps of LAI for Adaptation	Lear Area Index (LAI)		
	Maps of DHR Albedo for Adaptation	Spectral and Broadband (Visible, Near		
	Maps of BHR Albedo for Adaptation	Infrared and Shortwave) DHR & BHR with		
Albedo	Maps of DHR Albedo for Modelling	Associated Spectral Bidirectional		
	Maps of BHR Albedo for Modelling	Reflectance Distribution Function (BRDF) Parameters		
Land-Surface	Mana of Land Curfage Target	Land Surface Temperature (LST)		
Temperature	maps of Land-Surface Temperature	Soil Temperature ³		

 ² This is the only new ECV approved by GCOS Steering Committee in 2020.
 ³ Soil Temperature is a new ECV product temporarily included under the ECV Land-Surface Temperature. Its positioning will be subject to evaluation by the TOPC Panel and the GCOS Steering Committee.

Above-Ground Biomass	Maps of AGB	Abov	e-Ground Biomass (AGB)	
	Maps of Land Cover	Land	Cover	
Land Cover	Maps of High-Resolution Land Cover	Maps	s of High-Resolution Land Cover	
	Maps of Key IPCC Land Use, Related Changes and Land- Management Types	Maps Chan	s of Key IPCC Land Classes, Related Iges and Land Management Types	
	% Carbon in Soil	Carb	on in Soil	
Soil Carbon	Mineral Soil Bulk Density to 30 Cm and 1 M	Mine	ral Soil Bulk Density	
	Peatlands Total Depth of Profile, Area and Location	Peatl	ands	
	Burnt Areas	Burn	ed Area	
Fire	Active Fire Maps	Activ	e Fires	
	Fire Radiative Power	Fire I	Radiative Power (FRP)	
		Anth Fuel Produ	ropogenic CO ₂ Emissions from Fossil Use, Industry, Agriculture, Waste and ucts Use	
	Emissions from Fossil Fuel Use,	Anthropogenic CH ₄ Emissions from Fossil Fuel, Waste, Agriculture, Industrial Processes and Fuel Use		
	Sectors	Anth Fuel Produ Emis	ropogenic N ₂ O Emissions from Fossil Use, Industry, Agriculture, Waste and ucts Use, Indirect from N-Related sions/Depositions	
Anthropogenic Greenhouse-Gas		Anthropogenic F-Gas Emissions from Industrial Processes and Product Use		
Fluxes	Estimated Fluxes by Inversions of Observed Atmospheric Composition – National	Total Assin Atmo	Estimated Fluxes by Coupled Data nilation/Models with Observed ospheric Composition – National	
	Estimated Fluxes by Inversions of Observed Atmospheric Composition – Continental	Total Assin Atmo	Estimated Fluxes by Coupled Data nilation/Models with Observed ospheric Composition - Continental	
	Emissions/ Removals by IPCC Land Categories	Anth Land	ropogenic CO ₂ Emissions/Removals by Categories	
	High-Resolution CO ₂ Column Concentrations to Monitor Point Sources	High∙ Sour	-Resolution Footprint Around Point ces	
		Sens	ible Heat Flux	
	TOPC was considering the	Later	nt Heat Flux	
Evaporation from	practicality of this being an ECV	Bare	Soil Evaporation	
Land	(Latent and Sensible Heat Fluxes)	Inter	ception Loss	
	and, it so, what the requirements	Tran	spiration	
Anthropogenic Water Use	Anthropogenic Water Use	Anth	ropogenic Water Use	

III. ECVS REQUIREMENTS TABLES

In this section the requirements for the ECVs and their products are presented in 3 different sections Atmospheric, Ocean and Terrestrial.

Units are expressed according to the International System of units. For the time unit, the following abbreviations are used:

Minute (min); day (d); month (month); year (y).

Atmospheric ECVs

1. SURFACE

1.1 ECV: Air Pressure

1.1.1 ECV product: Atmospheric Pressure (near surface)

Name	Atmospheric Pressure (near surface)								
Definition	Air pressure at a known height above the surface with the height specified in the metadata.								
Unit	hPa								
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. The primary application of pressure in monitoring relates to the use of reanalysis and so these requirements have been set in this regard. Timeliness does not preclude delayed mode acquisition via e.g. data rescue. Important also, but not covered in the table, is the observation location information. A mis-								
	implications fo	or reanalys	is app	lications.					
				Requirem	ents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	10	Resolution is consistent with other surface ECVs				
Resolution			В	100					
			Т	500					
Vertical			G	-	N/A				
Resolution			B	-					
			T	-					
Temporal Resolution	h		G	1					
			Б	0					
Timolinoco	h		I C	12					
Timenness	11		B	24					
			т	2 4 720	monthly				
Required	hPa		G	0.5	montany				
Measurement			В	1					
Uncertainty (2-sigma)			Т	1					
Stability	hPa/decade		G	0.02					
	in dy decade		В	0.1					
			Т	0.2					
Standards and References	Kent, E.C., Ra Smith, S.R. ar the Ocean Sur	iyner, N.A. nd Willett, rface. Fron	, Berry K.M., tiers ii	y, D.I., East 2019: Obse n Marine Sc	man, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., rving Requirements for Long-Term Climate Records at ience 6, Article 441, doi:10.3389/fmars.2019.00441.				

1.2 ECV: Surface Temperature

1.2.1 ECV Product: Air Temperature (near surface)

Name	Air Temperature (near surface)									
Definition	Air temperature at a known height above surface, with the height specified in the metadata.									
Unit	К									
Note	The terminology used here for Tx (maximum daily temperature) and Tn (minimum daily temperature) and the observing cycle only applies to land-based meteorological stations. Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution, for example through the construction of gridded data products. Breakthrough targets are generally needed for reanalysis to make good use of these data. Temporal resolution: For better Reanalysis, we need more sampling down to 100km and sub- daily (hourly or 3-hourly). This is also needed for monitoring of extremes. For determining global annual temperature averages, the current network of land stations and ship and buoy measurements is adequate, but regional and higher temporal resolution averages can be highly uncertain (e.g. the 500 km sampling doesn't get made in many regions, such as Africa, the polar regions and the Southern Ocean).Even if we got to the goal sampling, the uncertainty in the monthly global average temperatures would be reduced, but not by much from what it is now. However, these more stringent requirements will allow regional monthly averages to be calculated. Even if we got to the goal sampling, the uncertainty in the monthly global average temperatures would be reduced, but not by much from what it is now. However, these more stringent requirements will allow regional monthly averages to be calculated. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example. be									
	acca in per			Require	ments					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10	Thorne et al. (2018)					
Resolution			B	100	Thorne et al. (2018)					
			T	500	Threshold for horizontal resolution is based on the literature and specifically over land where correlation distances tend to be smaller than over the oceans. Thorne et al. (2018) showed via repeat sub-sampling of CRUTEM4 that well-spaced networks of the order 180 stations over the globe could recreate full-field global mean land surface air temperature estimates (see details in Jones et al., 1997) for the monthly timescale. For surface air temperature over the ocean which is taken predominantly by ships and buoys this can be challenging in remote Ocean basins (see the earlier note and Kent et al., 2019)					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	h		G	< 1	Sub-hourly. Required for derivation of extreme indices.					
		Т	3	mode reanalysis assimilation. Breakthrough is the monthly average necessary to inform the global, regional and national monitoring statements from WMO and members. Captures most of the variability in the diurnal cycle Minimum sampling of diurnal cycle						
					(daily Tx/Tm)					
Timeliness	h		G	6	Allows use in near-real time reanalysis					
			В	24	Required for CDAS-mode reanalysis assimilation. Allows use in daily climate monitoring products					
			T	720	Monthly average is necessary to inform the global, regional and national monitoring statements from WMO					

					and members. Allows use in monthly climate monitoring products
Required	К		G	0.1	Uncertainty is assumed to include random and
Measurement			В	0.5	systematic effects. Thorne et al. (2018)
(2-sigma)			Т	1	Jones et al. (1997)
Stability	K/decade		G	0.01	Required for large-scale averages over century scales
			В	0.05	Required for large-scale averages over multi-decadal scales
			Т	0.1	Required for regional averages over multi decadal scales
Standards and References	Jones, P.D. temperatur Kent, E.C., Smith, S.R. the Ocean S Thorne, P.V P.D., Lawri Podesta, M climate fidu	, Osborn, T e averages Rayner, N. and Willet Surface. Fro V., Diamon more, J.H., ., Tassone, ucial referen	J. and J. J. Cl A., Be t, K.M. ontiers d, H.J. Lister C., Ve nce me	d Briffa, K.R limate 10, 2 rry, D.I., Ea ., 2019: Ob in Marine S ., Goodison, , D.H., Merl enema, V. a easurements	 ., 1997: Estimating sampling errors in large-scale .548-2568. <
	nttps://doi.	org/10.100	JZ/]0C.	5458.	

1.3 ECV: Surface Wind Speed and Direction

1.3.1 ECV Product: Wind Direction (near surface)

Name	Wind Direction (near surface)									
Definition	Direction from which wind is blowing at a known height above the surface which is to be specified in the metadata.									
Unit	Degree true									
Note	Wind directions are normally reported as an average due to their high variability. The averaging period should be reported as metadata. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be used in periodic revisions to climate monitoring products.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10						
Resolution			В	100	For consistency with other surface ECV					
			Т	500						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	h		G	<1	Sub-hourly					
Resolution			В	1	Captures most of the variability in the diurnal cycle					
			Т	3	Minimum sampling of diurnal cycle					
Timeliness	h		G	6	Allows use in near-real time reanalysis					
			В	24	Allows use in daily climate monitoring products					
			Т	720	Allows use in monthly climate monitoring products					
Required	degrees		G	1						
Measurement			В	5						
(2-sigma)			Т	10						
Stability	degrees/decade		G	1						
			В	2						
			Т	5						
Standards and References	Kent, E.C., Rayne Smith, S.R. and V the Ocean Surfac	er, N.A., Be Willett, K.M. e. Frontiers	rry, D. , 2019 ; in Ma	I., Eastm): Observ rine Scier	an, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., ring Requirements for Long-Term Climate Records at nce 6, Article 441, doi:10.3389/fmars.2019.00441.					

Name	Wind Speed (near surface)									
Definition	Speed of air at a known height above the surface which is to be specified in the metadata.									
Unit	m s⁻¹	m s ⁻¹								
Note	Wind speeds are normally reported as an average due to their high variability. The averaging period should be reported as metadata. Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution.									
				Requi	irements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	10						
Resolution			В	100						
			I	500						
Vertical			G	-	N/A					
Resolution			В	-						
				-						
Temporal Resolution	h		G	< 1	Sub-hourly					
			В	1	Captures most of the variability in the diurnal cycle					
			I C	3	Minimum sampling of diurnal cycle					
Timeliness	h		G	6	Allows use in near-real time reanalysis					
			В	24						
	1			/20	Monthly					
Required	m s ⁻¹		G	0.1						
Uncertainty			в	0.5						
(2-sigma)			I	1						
Stability	m s⁻¹/		G	0.1						
	decade		В	0.25						
			Т	0.5						
Standards and References	Kent, E.C. Smith, S.F the Ocean	, Rayner, N.A R. and Willett, Surface. Fror	., Berr K.M., ntiers i	y, D.I., E 2019: Ol n Marine	astman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., bserving Requirements for Long-Term Climate Records at Science 6, Article 441, doi:10.3389/fmars.2019.00441.					

1.3.2 ECV Product: Wind Speed (near surface)

Name	Wind Vector (near surface)								
Definition	Horizontal wind vector, at a known height above the surface which is to be specified in the metadata.								
Unit	m s⁻¹	m s ⁻¹							
Note	Wind direction period should	s are nori be reporte	mally r ed as r	eported as netadata.	an average due to their high variability. The averaging				
				Requirem	ients				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	10 100 500					
Vertical Resolution			G B T	-	N/A				
Temporal	h		G	<1	Sub-hourly				
Resolution			В	1	Captures most of the variability in the diurnal cycle				
			Т	3	Minimum sampling of diurnal cycle				
Timeliness	h		G	6					
			В	24					
			Т	720	Monthly				
Required	m s ⁻¹		G	0.1					
Measurement			В	0.5					
(2-sigma)			Т	1					
Stability	m s ⁻¹ /		G	0.1					
	decade		В	0.25					
			Т	0.5					
Standards and References	Kent, E.C., Ra Smith, S.R. ar the Ocean Sur	yner, N.A nd Willett, face. Fror	., Berr K.M., ntiers i	y, D.I., East 2019: Obse n Marine Sc	tman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., erving Requirements for Long-Term Climate Records at cience 6, Article 441, doi:10.3389/fmars.2019.00441.				

1.3.3 ECV Product: Wind Vector (near surface)

1.4 ECV: Surface Water Vapour

1.4.1 ECV Product: Dew Point Temperature (near Surface)

Name	Dew Point Temperature (near surface)									
Definition	Temperature to which air must be cooled to become saturated with water vapor at a known height above surface, with the height specified in the metadata.									
Unit	К	К								
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution, for example through the construction of gridded data products. Willett et al. 2008 show that spatial scales of near surface dew point temperature are comparable to those of temperature so the same horizontal resolution should be broadly applicable. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be used in periodic revisions to climate monitoring products.									
				Requir	rements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10	Willett et al. 2008, based on analogy with temperature					
Resolution			B	100						
Mastinal			I C	500	NI / A					
Resolution	Resolution		G	-	N/A					
			T	-						
Temporal	h		G	<1	Sub-hourly					
Resolution			В	1	Captures most of the variability in the diurnal cycle					
			Т	3	Minimum sampling of diurnal cycle					
Timeliness	h		G	6	Allows use in near-real time reanalysis					
			В	24	Allows use in daily climate monitoring products					
			Т	720	Allows use in monthly climate monitoring products					
Required	К		G	0.1						
Uncertainty			В	0.5						
(2-sigma)			Т	1						
Stability	K/decade		G	0.01	Required for large-scale averages over century scales					
			В	0.05	Required for large-scale averages over multi-decadal scales					
			Т	0.1	Required for regional averages over multi decadal scales					
Standards and References	Kent, E.C., Smith, S.R. the Ocean	Rayner, N and Wille Surface. F	I.A., Bo tt, K.M rontier	erry, D.I., E 1., 2019: O rs in Marine	Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., bserving Requirements for Long-Term Climate Records at Science 6, Article 441, doi:10.3389/fmars.2019.00441.					
	Willett, K. N and William for climate	4., Dunn, Is Jr., C. N monitorin	R. J. H I.: Hac g, Clin	I., Thorne, IISDH land n. Past, 10,	P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., surface multi-variable humidity and temperature record 1983-2006, doi:10.5194/cp-10-1983-2014, 2014.					
	Willett, K. M P. D., and F climate mo	M., William Parker D. I nitoring. C	ns Jr., E., 201 Climate	C. N., Dunr L3: HadISD e of the Pas	n, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, H: An updated land surface specific humidity product for t, 9, 657-677, doi:10.5194/cp-9-657-2013.					

1.4.2 ECV Product: Relative Humidity (near surface)

Name	Relative Humidity (near surface)								
Definition	Relative humidity at a known height above surface, with the height specified in the metadata. Relative humidity is the ratio of the amount of atmospheric moisture present relative to the amount that would be present if the air were saturated with respect to water or ice to be specified in the metadata.								
Unit	%								
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. Relative humidity is often derived from temperature and dewpoint temperature. It is important that the conversions be applied at the observation scale so as not to introduce both random and systematic effects into the analysis. Formulae to convert between the various water vapour metrics (Specific Humidity, Relative Humidity and Dewpoint are given in Willett et al. (2008). The observation requirements for each of the humidity variables is based on those for dewpoint temperature and are approximate, for more detailed information see Bell (1996).								
				Requirem	ents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	10 100 500	By analogy with near surface dewpoint temperature via near surface air temperature, requirement therefore tentative.				
Vertical Resolution			G B T	- -	N/A				
Temporal Resolution	h		G B T	<1 1 3	Sub-hourly				
Timeliness	h		G	6					
			В	24					
			Т	720	Monthly				
Required Measurement Uncertainty (2-sigma)	%RH		G B T	0.5 2.5 5					
Stability	%RH/decade		G	0.05					
			B T	0.25 0.5					
Standards and References	S. Bell, Guide to Kent, E.C., Ray Smith, S.R. and the Ocean Surf Willett, K. M., D and Williams Jr for climate mor	o the mea ner, N.A., d Willett, H ace. Front Dunn, R. J ., C. N.: H hitoring, C	Berry G.M., 2 iers in H., T ladISD lim. Pa	ent of hum , D.I., Eastr 019: Obser Marine Scie horne, P. W H land surf ast, 10, 198	idity, Guide 103, NPL, 1996. man, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., ving Requirements for Long-Term Climate Records at ence 6, Article 441, doi:10.3389/fmars.2019.00441. 4., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., ace multi-variable humidity and temperature record 32-2006, doi:10.5194/cp-10-1983-2014, 2014.				

Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for climate monitoring. Climate of the Past, 9, 657-677, doi:10.5194/cp-9-657-2013.

1.4.3 ECV Product: Air Specific Humidity (near surface)

Name	Atmospheric Specific Humidity (near Surface)							
Definition	Air specific humidity at a known height above surface, with the height specified in the metadata. Specific humidity is the ratio of the mass of water vapour and the mass of moist air.							
Unit	g kg ⁻¹							
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. Willett et al 2008 show that spatial scales of surface specific humidity are comparable to those of							
	Specific humidity is generally derived from temperature and dewpoint temperature. It is important that the conversions be applied at the observation scale so as not to introduce both random and systematic effects into the analysis. Formulae to convert between the various water vapour metrics (Specific Humidity, Relative Humidity and Dewpoint are given in Willett et al. (2008). Given the orders of magnitude variation in specific humidity between the tropics and the polar regions there is a strong case for latitudinally varying requirements for uncertainty and stability which would be more stringent in polar than extra-tropical than tropical climates. Current values are a compromise which may be indicative of extra-tropical locations.							
				Requirem	ents			
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal	km		G	10				
Resolution			В	100				
			Т	500				
Vertical Resolution			G	-	N/A			
Resolution			B	-				
			Т	-				
Temporal Resolution	n		G	<1	Sub-nourly			
			в	1				
Timelinese	h		I C	5				
rimenness			G	0				
			D T	24 720	Monthly			
Pequired	a ka ⁻¹		G	0.1	Monthly			
Measurement	y ky		B	0.1				
			Т	1				
(2-sigilia) Stability	a ka ⁻¹ /		G	- 0.01				
otability	decade		B	0.05				
			Т	0.1				
Standards and References	T 0.1 Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K.M., Dupp, R. J. H., Thorpa, R.W., Boll, S., do Dadotta, M., Darkor, D. F., Jacca, D. D.							
	and Williams Jr for climate mor	nitoring, C	HadISE Clim. P	DH land surf ast, 10, 198	Face multi-variable humidity and temperature record 33-2006, doi:10.5194/cp-10-1983-2014, 2014.			
	Willett, K. M., N P. D., and Park climate monito	Williams J er D. E., 2 ring. Clim	r., C. M 2013: ate of	N., Dunn, R. HadISDH: A the Past, 9,	. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, An updated land surface specific humidity product for , 657-677, doi:10.5194/cp-9-657-2013.			

1.5 ECV: Precipitation

1.5.1 ECV Product: Accumulated Precipitation

Name	Accumulated precipitation									
Definition	Integration of solid and liquid precipitation rate reaching the ground over a time period defined in the metadata.									
Unit	mm									
Note	This ECV is designed to monitor the amount of precipitation globally in order to investigate the impact on the hydrological cycle, agriculture, drinking water supply or droughts. It is driven to support studies on a continental to global scale. This implies, that it is not designed to monitor extremes globally on a local to regional scale in space and time, as the requirements are different to answer both scientific questions.									
				Require	ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	50 125 250						
Vertical Resolution			G B T		N/A					
Temporal Resolution	Temporal d Resolution		G	1	Daily aggregation over period which defines the upper limit of temporal sampling					
			D	50	upper limit of temporal sampling					
			т	365	Annual aggregation over period which defines the upper limit of temporal sampling					
Timeliness	d		G	1						
			В	7						
			Т	30						
Required	mm		G	1						
Measurement Uncertainty			В	2						
(2-sigma)			Т	5						
Stability	mm/decade		G	0.02						
			В	0.05						
			Т	0.1						
Standards and References										

1.6 ECV: Surface radiation budget

1.6.1 ECV Product: Upward Long-Wave Irradiance at Earth Surface

Name	Upward Long-Wave Irradiance at Earth Surface								
Definition	Flux density of terrestrial radiation emitted by the Earth surface.								
Unit	W m-2								
Note	Main driver of the uncertainty in the components of the surface radiation budget is the composition of the atmosphere (e.g. Water vapour, Aerosols, Clouds)". The Required Measurement Uncertainty (2-sigma) (see the VIM & GUM) includes both random and systematic components. The uncertainty is meant to be an uncertainty for the measurement device / instrument / ECV algorithm. The uncertainty of spatially and temporally averaged global mean value might be smaller.								
				Requir	ements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	10					
Reportation			в	50					
Martinel			I C	100	NZA				
Resolution			G	-	N/A				
			Б	-					
Tomporol	h		I C	-					
Resolution	11		G	1					
			т	2 4 720					
Timeliness	d		G	720					
rineiness	u		B						
			т	30	1 month after the observations period				
Required	W m ⁻²		G	1					
Measurement			В	5					
			Т	10					
(2-sigilia) Stability	$W m^{-2}/$		G	0.2					
Stability	decade		B	0.2					
	uccuuc		т	1					
			'	-					
Standards and References									

1.6.2 ECV Product: Downward Long-Wave Irradiance at Earth Surface

Name	Downward Long-Wave Irradiance at Earth Surface								
Definition	Flux density of radiation emitted by the gases, aerosols and clouds of the atmosphere to the Earth's surface.								
Unit	W m-2								
Note	Main driver of the uncertainty in the components of the surface radiation budget is the composition of the atmosphere (e.g. Water vapour, Aerosols, Clouds)".								
	The Required Measurement Uncertainty (2-sigma) (see the VIM & GUM) includes both random and systematic components. The uncertainty is meant to be an uncertainty for the measurement device / instrument / ECV algorithm. The uncertainty of spatially and temporally averaged global mean value might be smaller.								
			Re	quireme	ents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	10					
Resolution			В	50					
			Т	100					
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	h		G	1					
Resolution			В	24					
			Т	720					
Timeliness	d		G						
			В						
			Т	30	1 month after the observations period				
Required	W m-2		G	1					
Uncertainty			В	5					
(2-sigma)			Т	10					
Stability	W m- ² /decade		G	0.2					
			В	0.5					
			Т	1					
Standards and References									

1.6.3 ECV Product: Downward Short-Wave Irradiance at Earth Surface

Name	Downward Short-Wave Irradiance at Earth Surface										
Definition	Flux density of the solar radiation at the Earth surface.										
Unit	W m-2										
Note	Main driver of the uncertainty in the components of the surface radiation budget is the composition of the atmosphere (e.g. Water vapour, Aerosols, Clouds)". The Required Measurement Uncertainty (2-sigma) (see the VIM & GUM) includes both random and systematic components. The uncertainty is meant to be an uncertainty for the measurement device / instrument / ECV algorithm. The uncertainty of spatially and temporally averaged global mean value might be smaller.										
*		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Resolution	km		G	10							
			в	50							
Martinel			I C	100	N1/A						
Resolution			G	-	N/A						
Resolution			в	-							
Tomporal	b		Г С	-							
Resolution	11		B	1							
			т	24 720							
Timeliness	d		G	720							
Theffiess	u		B								
			т	30	1 month after the observations period						
Required	W m-2		G	1	Though area the observations period						
Measurement	•••••		B	-							
			Т	10							
(2-Siyina)	M = 2/		C	0.2							
Stability	decade		B	0.2							
	uecaue		т	1							
			1	T							
Standards and References											

2. UPPER AIR

2.1 ECV: Upper-air temperature

2.1.1 ECV Product: Atmospheric Temperature in the Boundary Layer

Name	Atmospheric Temperature in the Boundary Layer									
Definition	3D field of the atmospheric temperature in the Boundary Layer.									
Unit	К									
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real- time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Some additional considerations are also made, for which explanations are given in notes below this table.									
	The requirements for temperature in the boundary layer are mainly driven by needs for monitoring of fluxes for the goal threshold. Stability assumes independence of measurements between instruments permitting partial cancellation and is based upon need to be able to detect current trends which are c.0.2 K/decade.									
	Boundary layer temperature is assumed to share spatial characteristics with surface temperature for which this has been characterized in e.g. Thorne et al., 2018.									
Requirements										
Item needed	Unit Metric [1] Value Notes									

Item needed	Unit	Metric	[1]	Value	Notes
Horizontal	km		G	15	Hersbach et al. (2018), Thorne et al. (2005, 2018).
Resolution					This has been changed from the original 10km to 15 km to be consistent with Numerical Weather Prediction (NWP), although it is suggested that NWP should be at 10km.
					Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses, and resolves features influenced by local factors such as proximity of water bodies or significant topography.
			В	100	Hersbach et al. (2018), Thorne et al. (2005, 2018).
					A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate. For example, Waller et al. (2016) found that error correlations of surface temperature in observation-minus-background and observation-minus-analysis residuals from the Met Office high-resolution model range between 30 km and 80 km.
			Т	500	Hersbach et al. (2018), Thorne et al. (2005, 2018).
					Minimum resolution needed to resolve synoptic-scale features. Thorne et al., 2005 show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics. Surface and boundary layer are tightly coupled, particularly in the lowermost boundary layer.
Vertical Resolution	m		G	1	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).
					Determining fluxes requires this high vertical fidelity. Thus, this value has not been changed to be consistent with requirements for NWP as NWP thresholds would demonstrably fail to meet needs to quantify fluxes and close energy budget.
			В	10	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)
			Т	100	Minimum resolution considering the layer depth
Temporal Resolution	h		G	<1	Sub-hourly. A typical 4D-Var timeslot length, a sub- division into which observations are grouped for processing (ECMWF 2018)
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features

			Т	12	Minimum resolution needed to resolve synoptic-scale waves. For this reason, it has not been changed to ensure consistency with NWP requirements.			
Timeliness	h	h		1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			Т	24	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	К	RMS	G	0.1	These values are inferred based on the standard			
Measurement			В	0.5	deviations of 6-hourly analysis with respect to the			
(2-sigma)			Т	1	variability, (B) of medium variability and (G) of low variability.			
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations			
Stability	K/decade		G	0.01	These values are based on the need to detect			
	,		В	0.05	temperature trends such as those observed in recent			
			Т	0.1	decades (IPCC 2013). (1) corresponds to regions of large trend or 50% of observed global-mean trend (B) regions			
					of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.			
Standards	ECMWF, 20)18: IFS docu	imenta	ation – Cy	45r1, Part I: Observations. ECMWF, UK, 82p. Available at			
and	https://ww	w.ecmwf.int/	en/elil	orary/187	'11-part-i-observations.			
References	Fujiwara, M., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417– 1452. https://doi.org/10.5194/acp-17-1417-2017. 2017							
	Hersbach et al. (2018): Operational global reanalysis: progress, future directions and synergies with NWP. ERA Report Series, 27. http://dx.doi.org/10.21957/tkic6g3wm.							
	Ingleby et Meteor. So	al., 2016: Pro c., 97, 2149-	ogress 2161.	toward h https://d	igh-resolution, real-time radiosonde reports. Bull. Amer. oi.org/10.1175/BAMS-D-15-00169.1.			
	 IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm. Thorne, P. W., D. E. Parker, et al. (2005). "Revisiting radiosonde upper air temperatures from 1958 to 2002." Journal of Geophysical Research-Atmospheres 110(D18), doi:10.1029/2004JD005753 							
	Thorne, P. network. I.	Thorne, P.W. et al. (2018), Towards a global land surface climate fiducial reference measurements network. IJOC, http://onlinelibrary.wiley.com/doi/10.1002/joc.5458/full.						
	Waller, J. E.,* S. P. Ballard, S. L. Dance, G. Kelly, N. K. Nichols, and David Simonin, 2016: Diagnosing horizontal and inter-channel observation error correlations for SEVIRI observations using observation-minus-background and observation-minus-analysis statistics. Remote Sens. 2016, 8(7), 581, doi:10.3390/rs8070581							

2.1.2 ECV Product: Atmospheric Temperature in the Free Troposphere

	Atmochanic Tomporature in the Free Treneshere								
Name	Atmospheric Temperature in the Free Troposphere								
Definition	3D field of the atmospheric temperature in the troposphere.								
Unit	K								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near- real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Some additional considerations are also made, for which explanations are given in notes below this table.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km	n	G	15	Hersbach et al. (2018), Thorne et al. (2005) This has been changed from the original 10km to 15 km to be consistent with Numerical Weather Prediction (NWP), although it is suggested that NWP should be at 10km. Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses, and resolves features influenced by local factors such as proximity of water bodies or significant topography.				
			В	100	Hersbach et al. (2018), Thorne et al. (2005).				
					A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate. Hersbach et al. (2018) shows examples of the background error covariances prescribed for the latest-generation reanalysis, where the horizontal correlation decreases below 1/e within the length of 500 km or less in the troposphere. It should be noted that the correlation length depends on the data assimilation system used as well as the observing system assimilated for making initial conditions. In general, the correlation length tends to be shorter when the data assimilation system has a higher resolution and is more advanced as well as when the observations assimilated have a higher density. In order to produce reanalysis data with accuracy comparable to NWP, the requirements need to be similar to those for NWP, as already proposed in the table.				
			Т	1000	Hersbach et al. (2018), Thorne et al. (2005) Minimum resolution needed to resolve synoptic- scale waves. Thorne et al., (2005) show typical e- folding correlation distances in radiosonde- measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics.				
Vertical Resolution	km		G	0.01	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016). This has not been changed to be consistent with NWP requirements as NWP has requirements that are too coarse for some such applications, e.g. determining fluxes requires high vertical fidelity.				
			В	0.1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	1	Minimum resolution considering the layer depth				
Temporal Resolution	h	h	G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features				

			Т	24	Minimum resolution needed to resolve synoptic- scale waves			
Timeliness	rimeliness h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	К	RMS	G	0.1	These values are inferred based on the standard			
Measurement			В	0.5	deviations of 6-hourly analysis with respect to the			
Uncertainty (2-sigma)			Т	1	monthly climatology. (T) corresponds to regions of high variability. (B) of medium variability and (G) of			
(Z-Sigilia)					low variability.			
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations			
Stability	K/decade		G	0.01	IPCC (2013)			
	·		В	0.02	These values are based on the need to detect			
			Т	0.05	temperature trends such as those observed in			
					(T) corresponds to regions of large trend or 50% of			
					observed global-mean trend, (B) regions of medium			
					trend or 20% of global-mean trend, and (G) regions			
				C 45 4	of small trend or 10% of global-mean trend.			
Standards and References	https://ww	18: IFS documen w.ecmwf.int/en/e	itation library	– Cy45r] / <mark>18711-</mark> [I, Part I: Observations. ECMWF, UK, 82p. Available at part-i-observations.			
	Fujiwara, M overview of https://doi.	Fujiwara, M., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017_2017_2017_2017_2017_2017_2017_2017_						
	Hersbach e with NWP.	t al. (2018): Ope ERA Report Series	rationa s, 27.	al global i http://dx	reanalysis: progress, future directions and synergies			
	Ingleby et a Meteor. Soo	al., 2016: Progres c., 97, 2149-2161	ss towa L. <mark>http</mark> s	ard high- s://doi.or	resolution, real-time radiosonde reports. Bull. Amer. rg/10.1175/BAMS-D-15-00169.1.			
	IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwn/outline2019-nwn/index.htm							
	Lübken, FJ., Berger, U., and Baumgarten, G. (2013), Temperature trends in the midlatitude summer mesosphere, J. Geophys. Res. Atmos., 118, 13,347-13,360, doi:10.1002/2013JD020576.							
	Thorne, P. W., D. E. Parker, et al. (2005). "Revisiting radiosonde upper air temperatures from 1958 to 2002." Journal of Geophysical Research-Atmospheres 110(D18), doi:10.1029/2004JD005753							
2.1.3 ECV Product: Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere

Name	Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere								
Definition	3D field of the atmospheric temperature in the UTLS								
Unit	К								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real- time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Some additional considerations are also made, for which explanations are given in notes below this table. For vertical resolution, high vertical resolution is required to diagnose both multiple tropopauses but also temperature beight.								
		Requirements							
Item needed	Unit Metric [1] Value Notes								
Horizontal	km		G	15	Hersbach et al. (2018), Thorne et al. (2005)				
Resolution					Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses.				
			В	100	Hersbach et al. (2018), Thorne et al. (2005).				
					A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate.				
			Т	500	Hersbach et al. (2018), Thorne et al. (2005)				
					Minimum resolution needed to resolve synoptic-scale waves. Thorne et al., 2005 show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics.				
Vertical	m		G	25	Thorne et al (2005).				
Resolution	tesolution				This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
					goal of 300m, is adequate for locating the tropopause.				
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	250	Minimum resolution considering the layer depth				
Temporal Resolution	h M		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features				
			Т	24	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	К	RMS	G	0.1	These values are inferred based on the standard				
Measurement			В	0.5	deviations of 6-hourly analysis with respect to the monthly climatology (T) corresponds to regions of high				
(2-sigma)			Т	1	variability. (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.				

		_							
Stability	K/decade	G B T	0.01 0.02 0.05	These values are based on the need to detect temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013). (T) corresponds to regions of large trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.					
Standards and	ECMWF, 2018: IFS do at https://www.ecmwf	cumenta .int/en/	ation – Cy elibrary/:	45r1, Part I: Observations. ECMWF, UK, 82p. Available					
References	Fujiwara, M., 2017: In overview of the reanal https://doi.org/10.519	, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, org/10.5194/acp-17-1417-2017, 2017.							
	Hersbach et al. (2018) with NWP. ERA Report	: Opera Series,	itional glo 27. http:	bal reanalysis: progress, future directions and synergies //dx.doi.org/10.21957/tkic6g3wm.					
	Ingleby et al., 2016: F Meteor. Soc., 97, 2149	Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.							
	IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.								
	JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.								
	Lübken, FJ., Berger, summer mesosphere, Thorne, P. W., D. E. P. 1958 to 2002." Journa doi:10.1029/2004JD00	U., and J. Geop arker, e I of Geo)5753	Baumgar hys. Res. t al. (200 ophysical	ten, G. (2013), Temperature trends in the midlatitude Atmos., 118, 13,347-13,360, doi:10.1002/2013JD020576. 5). "Revisiting radiosonde upper air temperatures from Research-Atmospheres 110(D18),					

2.1.4 ECV Product: Atmospheric Temperature in the Middle and Upper Stratosphere

Name	Atmospheric Temperature in the Middle and Upper Stratosphere								
Definition	3D field of the atmospheric temperature in the middle and upper stratosphere.								
Unit	К								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real- time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Correlation distances on climate timescales are much larger in the stratosphere than the troposphere. The dynamical processes are distinct as is the degree of stratification which leads to lower requirements for both vertical and spatial resolution. Some large-scale waves are common to the upper stratosphere and lower mesosphere, with horizontal scales of around 2500 km. Historical and projected future trends are larger so commensurately the stability requirements can be relaxed accordingly.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Resolution	кт		G	50	The stratospheric effective resolution of most Numerical Weather Prediction (NWP) systems				
			В	100	Vincent (2015) A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate.				
			т	1500	Vincent (2015) Minimum resolution needed to resolve synoptic-scale features.				
Vertical Resolution	al km ution	G	0.5	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).					
			В	1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	3	Minimum resolution considering the layer depth				
Temporal Resolution	emporal h esolution	G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)					
		В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features					
			Т	24	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	ness h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required Measurement Uncertainty (2-sigma)	К	RMS	G B T	0.1 0.5 1	These values are inferred based on the standard deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				
					values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.				
Stability	K/decade		G	0.05	These values are based on the need to detect				
			B T	0.1 0.2	temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013). (T) corresponds to regions of large trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend				

	IPCC (2013)								
Standards and	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations.								
References	⁻ ujiwara, M., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017.								
	Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.								
	IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.								
	JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma- center/nwp/outline2019-nwp/index.htm.								
	Lübken, FJ., Berger, U., and Baumgarten, G. (2013), Temperature trends in the midlatitude summer mesosphere, J. Geophys. Res. Atmos., 118, 13,347-13,360, doi:10.1002/2013JD020576.								
	Vincent, R. A., 2015: The dynamics of the mesosphere and lower thermosphere: a brief review.								

2.1.5 ECV Product: Atmospheric Temperature in the Mesosphere

Name	Atmospheric Temperature in the Mesosphere								
Definition	3D field of the atmospheric temperature in the mesosphere.								
Unit	K								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real- time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Horizontal resolution, vertical resolution, temporal sampling, and uncertainty thresholds are based on the scales and amplitudes of typical dynamical features of the mesosphere. Trends and current uncertainties are larger than in the troposphere, so stability criteria can also be relaxed.								
	Requirements								
Item needed	Unit Metric [1] Value Notes								
Horizontal Resolution	km		G	50	Garcia (2005), Vincent (2015) Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses.				
			В	100	Garcia (2005), Vincent (2015) A typical horizontal error correlation length in first guess				
					fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate.				
			Т	1500	Garcia (2005), Vincent (2015)				
					Minimum resolution needed to resolve synoptic-scale waves. Thorne et al., (2005) show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics.				
Vertical	km		G	0.5	Garcia (2005), Vincent (2015)				
Resolution					This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	1	Garcia (2005), Vincent (2015)				
					Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
		Т	3	Garcia (2005), Vincent (2015) Minimum resolution considering the layer depth					
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features				
			Т	24	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	К	RMS	G	0.1	Garcia (2005), Vincent (2015)				
Measurement			В	0.5	These values are inferred based on the standard				
(2-sigma)			Т	1	deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				
					kms departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.				
Stability	K/decade		G	0.05	Lübken et al. (2013)				

			B	0.1	These values are based on the need to detect temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013). (T) corresponds to regions of large trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.					
Standards and References	ECMWF, 20 https://ww Fujiwara, N overview o https://doi	F, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at //www.ecmwf.int/en/elibrary/18711-part-i-observations. ra, M., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and ew of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, //doi.org/10.5194/acp-17-1417-2017, 2017.								
	Garcia, R. SABER. Jou Ingleby et	A., 2005: Lar urnal of Atmo: al., 2016: Pr	Large-Scale waves in the mesosphere and lower thermosphere Observed b tmospheric Sciences, 62, 10.1175/JAS3612.1. 5: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer							
	 Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 									
	JMA, 2019 Agency, Ag Forecasting Meteorolog center/nwg	9: Outline of the operational numerical weather prediction at the Japan Meteorolog ppendix to WMO Technical Progress Report on the Global Data-processing and g System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan gical Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-p/outline2019-nwp/index.htm.								
	Lübken, FJ., Berger, U., and Baumgarten, G. (2013), Temperature trends in the midlatitude summer mesosphere, J. Geophys. Res. Atmos., 118, 13,347-13,360, doi:10.1002/2013JD020576. Thorne, P. W., D. E. Parker, et al. (2005). "Revisiting radiosonde upper air temperatures from 1958 to 2002." Journal of Geophysical Research-Atmospheres 110(D18), doi:10.1029/2004JD005753									

2.2 ECV: Upper-air wind speed and direction

2.2.1 ECV Product: Wind (horizontal) in the Boundary Layer

Name	Wind (horizontal) in the Boundary Layer								
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the boundary layer.								
Unit	m s ⁻¹								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near- real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given in notes below this table. Additional goal requirements for the lowermost part of the boundary layer (values in parentheses) are for better sampling of micrometeorological phenomena and accurate calculation of fluxes.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	15	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	100	A typical horizontal error correlation length in first guess fields.				
			Т	500	Minimum resolution needed to resolve synoptic-scale waves.				
Vertical Resolution	m		G	10(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed.				
					This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
					The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)				
			В	50(10)	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	100	Minimum resolution considering the layer depth				
Temporal Resolution	emporal min Resolution		G	30(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed.				
					A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).				
					Given large diurnal cycle in the boundary layer, higher temporal sampling is required.				
					The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)				
			В	60	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.				
			Т	720	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	m s⁻¹	RMS	G	0.5	These values are inferred based on the standard				
Measurement			В	3	deviations of 6-hourly analysis with respect to the				
sigma)			Т	5	regions of high variability, (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical				

					verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).			
Stability	m s⁻¹/		G	0.1	These values are inferred based on the RMS trends of			
	decade		В	0.3	(T) corresponds to regions of large trend (B) of			
			Т	0.5	medium trend and (G) of small trend.			
Standards and References	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations.							
	Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017.							
	Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.							
	JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.							

2.2.2 ECV Product: Wind (horizontal) in the Free Troposphere

Name	Wind (horizontal) in the Free Troposphere								
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the troposphere.								
Unit	m s ⁻¹								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-								
	real-time c	ontinuation as	users	of this EC	CV. Some additional considerations are also made, for				
	Requirements								
Thom peopled	Unit Metric [1] Value Notes								
Horizontal	km	Metric	C C	15	Roughly corresponds to the current global				
Resolution	KIII		G	15	Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	100	A typical horizontal error correlation length in first guess fields.				
			Т	1000	Minimum resolution needed to resolve synoptic- scale waves.				
Vertical	m		G	10	Global NWP requirements are not adequate to				
Resolution					monitor large-scale vertical circulation (e.g. the Hadley and Walker circulation) and these have not been changed.				
					This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	1500	Minimum resolution considering the layer depth. The threshold for vertical resolution roughly corresponds to the resolution of the standard levels for the traditional radiosonde observation.				
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.				
			Т	12	Minimum resolution needed to resolve synoptic- scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	m s⁻¹	RMS	G	1	These values are inferred based on the standard				
Measurement Uncertainty (2-			В	3	deviations of 6-nourly analysis with respect to the monthly climatology (Figs. 1, 2), (T) corresponds to				
sigma)			Т	5	regions of high variability, (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).				
Stability	m s⁻¹/		G	0.1	These values are inferred based on the RMS trends				
	decade		В	0.3	of monthly analysis for the 1981-2010 period (Fig. 1) (T) corresponds to regions of large trend (R) of				
			Т	0.5	medium trend and (G) of small trend.				
Standards and References	ECMWF, 20 at https://w	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations.							

Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017.

Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.

JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Dataprocessing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.3	ECV Product: Wind (horizontal) in the Upper Troposphere and Lower
	Stratosphere

Name	Wind (horizontal) in the Upper Troposphere and Lower Stratosphere.							
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the UTLS.							
Unit	m s ⁻¹							
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real- time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.							
	Requirements							
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	km		G	15	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses			
			В	100	A typical horizontal error correlation length in first guess fields.			
			Т	500	Minimum resolution needed to resolve synoptic-scale waves.			
Vertical Resolution	m		G	25	Global NWP requirements (0.3 km for goal and 3 km for threshold) are not adequate to infer tropopause region behavior and thus we are not changing these except that the goal requirement has been relaxed from 10 m to 25 m. This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).			
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)			
			Т	500	Minimum resolution considering the layer depth. To infer tropopause region behavior, such as tropopause folding (e.g. Lamarque and Hess 2015), higher vertical resolution is required.			
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).			
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.			
			Т	12	Minimum resolution needed to resolve synoptic-scale waves			
Timeliness	eliness h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	m s ⁻¹	RMS	G	1	These values are inferred based on the standard			
Uncertainty			В	3	monthly climatology (Figs. 1, 2). (T) corresponds to			
(2-sigma)			Т	5	regions of high variability, (B) of medium variability and (G) of low variability.			
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).			
Stability	m s⁻¹/		G	0.1	These values are inferred based on the RMS trends of			
	decade		B T	0.3 0.5	monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.			
Standards	ECMWF, 201	8: IFS docum	entatio	n – Cy45	r1, Part I: Observations. ECMWF, UK, 82p. Available at			
and	https://www	.ecmwf.int/en	/elibra	ry/18711	-part-i-observations.			

Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017.

Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.

JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

Lamarque, J. F., and P. Hess, 2015: Stratosphere/troposphere exchange and structure – local process. Encyclopedia of Atmospheric Sciences (Second Edition), 262-268. https://doi.org/10.1016/B978-0-12-382225-3.00395-9.

2.2.4 ECV Product: Wind (horizontal) in the Middle and Upper Stratosphere

Name	Wind (horizontal) in the Middle and Upper Stratosphere.								
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the middle and upper stratosphere.								
Unit	m s⁻¹								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real- time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	50	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	100	A typical horizontal error correlation length in first guess fields				
			Т	3000	Minimum resolution needed to resolve planetary-scale waves				
Vertical	km		G	1	Consistent with Global NWP.				
Resolution			В	2	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	3	Minimum resolution considering the layer depth.				
Temporal Resolution	h	G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)					
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.				
			Т	24	Minimum resolution needed to resolve planetary waves				
Timeliness	meliness h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	m s⁻¹	RMS	G	1	These values are inferred based on the standard				
Measurement			В	5	deviations of 6-hourly analysis with respect to the				
(2-sigma)			Т	10	regions of high variability, (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).				
Stability	m s⁻¹/		G	0.1	These values are inferred based on the RMS trends of				
	decade		В	0.5	monthly analysis for the 1981-2010 period (Fig. 1). (T)				
			Т	1	trend and (G) of small trend.				
Standards	ECMWF, 2	018: IFS docu	imenta	ition – Cy	45r1, Part I: Observations. ECMWF, UK, 82p. Available at				
and	https://ww	vw.ecmwf.int/	en/elil	orary/187	11-part-i-observations.				
References	Fujiwara e overview o https://do	et al., 2017: In of the reanaly: i.org/10.5194	sis sys /acp-1	tion to ti tems. Atr .7-1417-2	ne SPARC Reanalysis Intercomparison Project (S-RIP) and nos. Chem. Phys., 17, 1417-1452. 2017.				
	Ingleby et Meteor. So	al., 2016: Pro	ogress 2161.	toward h	igh-resolution, real-time radiosonde reports. Bull. Amer. pi.org/10.1175/BAMS-D-15-00169.1.				
	JMA, 201 Agency, A Forecastin Meteorolo center/nw	9: Outline of t ppendix to WI g System (GD gical Agency, p/outline2019	he ope MO Teo PFS) a Tokyo, -nwp/	erational i chnical Pr and Nume Japan. A index.htn	numerical weather prediction at the Japan Meteorological ogress Report on the Global Data-processing and erical Weather Prediction (NWP) Research. Japan available at http://www.jma.go.jp/jma/jma-eng/jma- n.				

2.2.5 ECV Product: Wind (horizontal) in the Mesosphere

Name	Wind (horizontal) in the Mesosphere									
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the mesosphere.									
Unit	m s ⁻¹									
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real- time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	50	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses					
			В	100	A typical horizontal error correlation length in first guess fields					
			Т	3000	Minimum resolution needed to resolve planetary-scale waves					
Vertical	km		G	1						
Resolution			В	2	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)					
			Т	3	Minimum resolution considering the layer depth.					
Temporal Resolution	h		G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP.					
				A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).						
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features					
			Т	24	Minimum resolution needed to resolve planetary-scale waves					
Timeliness	iness h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring					
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)					
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive					
Required	m s⁻¹	RMS	G	1	These values are inferred based on the standard					
Measurement			В	5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 1, 2). (T) corresponds to					
(2-sigma)			Т	10	regions of high variability, (B) of medium variability and					
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).					
Stability	m s⁻¹/		G	0.1	These values are inferred based on the RMS trends of					
	decade		В	0.5	monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of medium					
			I	1	trend and (G) of small trend.					
Standards	ECMWF, 20	18: IFS docu	menta	tion – Cy	45r1, Part I: Observations. ECMWF, UK, 82p. Available					
References	Fujiwara et overview o 1452. https	at https://www.ecmwf.int/en/elibrary/18711-part-i-observations. Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417- 1452, https://doi.org/10.5194/acp.17-1417-2017								
	Ingleby et Meteor. So	al., 2016: Pro c., 97, 2149-3	ogress 2161.	toward h https://d	igh-resolution, real-time radiosonde reports. Bull. Amer. oi.org/10.1175/BAMS-D-15-00169.1.					
	JMA, 2019: Agency, Ap Forecasting Meteorolog center/nwp	Outline of the pendix to WM System (GD ical Agency, overline2019	ie oper 10 Tec PFS) a Tokyo, -nwp/i	rational n hnical Pro nd Nume Japan. A ndex.htm	umerical weather prediction at the Japan Meteorological ogress Report on the Global Data-processing and erical Weather Prediction (NWP) Research. Japan available at http://www.jma.go.jp/jma/jma-eng/jma- n.					

2.2.6 ECV Product: Wind (vertical) in the Boundary Layer

Name	Wind (vertical) in the Boundary Layer									
Definition	3D field of the vertical component of the 3D wind vector in the boundary layer.									
Unit	cm s⁻¹									
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real- time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed. Additional goal requirements for the lowermost part of the boundary layer (values in parentheses) are for better sampling of micrometeorological phenomena and accurate calculation of fluxes.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	15	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses					
			В	200	This has been changed from the original 100 km to 200 km to be consistent with Global NWP.					
			Т	500	Minimum resolution needed to resolve synoptic-scale waves					
Vertical Resolution	m		G	10(1)	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016). The value in parentheses is for the lowermost part of the					
			В	100	Roughly corresponds to the assimilating model resolution					
			т	500	Minimum resolution considering the layer depth					
Temporal Resolution	Temporal min Resolution		G	30(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed except that the goal requirement has been relaxed from 10 min to 30 min as has been done for Horizontal Wind Velocity in the same layer.					
					A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018). Given large diurnal cycle in the boundary layer, higher temporal sampling is required.					
					The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)					
			В	60	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features.					
			Т	720	Minimum resolution needed to resolve synoptic-scale waves					
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring					
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)					
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive					
Required	cm s⁻¹	RMS	G	0.5	These values are inferred based on the standard					
Measurement Uncertainty			В	1	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 4, 5), (T) corresponds to					
(2-sigma)			Т	1.5	regions of high variability, (B) of medium variability and (G) of low variability.					
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.					
Stability	cm s-1/		G	0.05	These values are inferred based on the RMS trends of					
	decade		В	0.1	monthly analysis for the 1981-2010 period (Fig. 4). (T)					
			Т	0.15	corresponds to regions of large trend, (B) of medium trend and (G) of small trend.					

Standards and	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations.						
References F 0 1 In M JI A F M C C	ujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417- 1452. https://doi.org/10.5194/acp-17-1417-2017.						
	Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.						
	JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.						

2.2.7 ECV Product: Wind (vertical) in the Free Troposphere

Name	Wind (vertical) in the Free Troposphere								
Definition	3D field of the vertical component of the 3D wind vector in the troposphere.								
Unit	cm s ⁻¹								
Note	The following	ng requireme	ents ar	e inferred	d mainly from the viewpoint of reanalysis and its near-				
	for which e	ontinuation a	as user	s of this l on where	ECV. Some additional considerations are also made,				
	for which c		Re	equirem	ents				
Item needed	Unit Metric [1] Value Notes								
Horizontal	km	. lotilo	G	15	Roughly corresponds to the current global Numerical				
Resolution					Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	200	Consistent with Global NWP				
			Т	1000	Minimum resolution needed to resolve synoptic-scale waves.				
Vertical Resolution	m		G	10	Global NWP requirements are not adequate to monitor large-scale vertical circulation (e.g. the Hadley and Walker circulation) and these have not been changed.				
					This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	1500	Minimum resolution considering the layer depth				
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features				
			Т	12	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	cm s⁻¹	RMS	G	0.5	These values are inferred based on the standard				
Measurement Uncertainty (2-			В	1.5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 4, 5), (T) corresponds to				
sigma)			т	2.5	regions of high variability, (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations				
Stability	cm s⁻¹/		G	0.05	These values are inferred based on the RMS trends				
	decade		В	0.15	of monthly analysis for the 1981-2010 period (Fig. 4). (T) corresponds to regions of large trend. (B) of				
			Т	0.25	medium trend and (G) of small trend				
Standards and	ECMWF, 20	18: IFS docu	umenta	ation – Cy	y45r1, Part I: Observations. ECMWF, UK, 82p.				
References	Available a	t https://www	w.ecm	wf.int/en,	/elibrary/18711-part-i-observations.				
	and overvie 1452. https	ew of the reas://doi.org/10	nalysis 0.5194	s systems /acp-17-	s. Atmos. Chem. Phys., 17, 1417- 1417-2017.				
	Ingleby et Amer. Mete	al., 2016: Pro eor. Soc., 97,	ogress , 2149	toward h -2161. ht	high-resolution, real-time radiosonde reports. Bull. tps://doi.org/10.1175/BAMS-D-15-00169.1.				
	JMA, 2019: Meteoroloa	Outline of thical Agency.	ne ope Appen	rational r dix to WN	numerical weather prediction at the Japan 40 Technical Progress Report on the Global Data-				

processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.8	ECV Product: Wind (vertical) in the Upper Troposphere and Lower
	Stratosphere

Name	Wind (vertical)in the Upper Troposphere and Lower Stratosphere.								
Definition	3D field of the vertical component of the 3D wind vector in the UTLS.								
Unit	cm s ⁻¹								
Note	The followi time contir	ing requiremenuation as use	nts are ers of t	e inferred his ECV.	mainly from the viewpoint of reanalysis and its near-real- Some additional considerations are also made, for which				
	explanatio	ns are given v	where I	needed.					
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	15	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	200	Consistent with Global NWP				
			Т	500	Minimum resolution needed to resolve synoptic-scale waves				
Vertical Resolution	m		G	25	Global NWP requirements (0.3 km for goal and 3 km for threshold) are not adequate to infer tropopause region behavior and thus we are not changing these except that the goal requirement has been relaxed from 0.01 km to 0.025 km. This high resolution allows different users the option to				
					subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	500	To infer tropopause region behavior, such as tropopause folding (e.g. Lamarque and Hess 2015), higher vertical resolution is required.				
Temporal Resolution	remporal h Resolution		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features				
			Т	12	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	cm s ⁻¹	RMS	G	0.5	These values are inferred based on the standard				
Measurement			В	1.5	deviations of 6-hourly analysis with respect to the				
(2-sigma)			Т	2.5	regions of high variability, (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.				
Stability	cm s ^{-1/}		G	0.05	These values are inferred based on the RMS trends of				
	decade		В	0.15	monthly analysis for the 1981-2010 period (Fig. 4). (T)				
			Т	0.25	trend and (G) of small trend				
Standards and	ECMWF, 20 https://ww	018: IFS docu	imenta en/elit	tion – Cy prary/187	45r1, Part I: Observations. ECMWF, UK, 82p. Available at 11-part-i-observations.				
References	Fujiwara e overview c https://doi	et al., 2017: I of the reanalys i.org/10.5194	ntrodu sis syst <mark>/acp-1</mark>	ction to t tems. Atr 7-1417-2	he SPARC Reanalysis Intercomparison Project (S-RIP) and nos. Chem. Phys., 17, 1417-1452.				

Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.

JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

Lamarque, J. F., and P. Hess, 2015: Stratosphere/troposphere exchange and structure – local process. Encyclopedia of Atmospheric Sciences (Second Edition), 262-268. https://doi.org/10.1016/B978-0-12-382225-3.00395-9.

2.2.9 ECV Product: Wind (vertical) in the Middle and Upper Stratosphere

Name	Wind (vertical) In the Middle and Upper Stratosphere										
Definition	3D field of the vertical component of the 3D wind vector in the middle and upper stratosphere.										
Unit	cm s ⁻¹										
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-										
	real-time con	real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed									
	which explana	ations are give	en wne	re neede							
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	50	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses						
			В	200	Consistent with Global NWP						
			Т	3000	Minimum resolution needed to resolve planetary- scale waves						
Vertical	km		G	0.5							
Resolution			В	2	Consistent with Global NWP. Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)						
			Т	3	Minimum resolution considering the layer depth						
Temporal	h		G	1	Consistent with Global NWP.						
Resolution					A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)						
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features						
			Т	24	Minimum resolution needed to resolve planetary- scale waves						
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring						
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)						
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive						
Required	cm s⁻¹	RMS	G	1	These values are inferred based on the standard						
Measurement			В	3	deviations of 6-hourly analysis with respect to the						
sigma)			Т	5	to regions of high variability, (B) of medium						
					variability and (G) of low variability.						
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations						
Stability	cm s⁻¹/		G	0.05	These values are inferred based on the RMS trends						
	decade		В	0.15	of monthly analysis for the 1981-2010 period (Fig.						
			Т	0.25	4). (1) corresponds to regions of large trend, (B) of medium trend and (G) of small trend						
Standards and References	ECMWF, 2018	3: IFS docume	ntatior	1 - Cy45r	1. Part I: Observations. ECMWF, UK, 82p. Available						
	Fujiwara et al and overview	., 2017: Intro of the reanaly	duction sis sys	n to the S stems. At	SPARC Reanalysis Intercomparison Project (S-RIP) mos chem. Phys., 17, 1417-						
	Ingleby et al.	, 2016: Progre	ess tow	p-17-141 /ard high·	-resolution, real-time radiosonde reports. Bull.						
	Amer. Meteor	. Soc., 97, 21 Jutline of the o	49-216 peratio	51. https: onal.num	://doi.org/10.1175/BAMS-D-15-00169.1. erical weather prediction at the Japan Meteorological						
	Agency, Appe	Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and									

Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.10 ECV Product: Wind (vertical) in the Mesosphere

Name	Wind (vertical) in the Mesosphere.									
Definition	3D field of the vertical component of the 3D wind vector in the mesosphere.									
Unit	cm s ⁻¹									
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near- real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	50	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses					
			В	200	Consistent with Global NWP					
			Т	3000	Minimum resolution needed to resolve planetary- scale waves.					
Vertical	km		G	1						
Resolution			В	2	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)					
			Т	3	Minimum resolution considering the layer depth					
Temporal	h		G	1	Consistent with Global NWP					
Resolution	Resolution				A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).					
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features					
			Т	24	Minimum resolution needed to resolve planetary- scale waves					
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring					
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)					
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive					
Required	cm s ⁻¹	RMS	G	2	These values are inferred based on the standard					
Measurement			В	6	deviations of 6-hourly analysis with respect to the					
sigma)	ty (2-		Т	10	to regions of high variability, (B) of medium variability and (G) of low variability. RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.					
Stability	cm s⁻¹/		G	0.1	These values are inferred based on the RMS trends					
	decade		В	0.2	of monthly analysis for the 1981-2010 period (Fig. 4) (T) corresponds to regions of large trend (B) of					
			Т	0.3	medium trend and (G) of small trend.					
Standards and References	Image: Construct of the second systemsImage: Construct of the second sy									

Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.11 Figures

Figure 1. U-component of wind from JRA-55 for January (a) zonal means averaged over the 1981-2010 period, (b) standard deviations of 6-hourly analysis with respect to the monthly climatology, (c) zonal mean trends of monthly analysis for the 1981-2010 period and (d) RMS trends.

Figure 2. As Figure 1 but for July.

Figure 3. (Top) global mean and (2nd) standard deviation of departure, (3rd) the number and (bottom) global mean observed values of radiosonde u-component of winds used in JRA-55 for (a) 30 hPa, (b) 100 hPa, (c) 250 hPa, (d) 500 hPa and (e) 850 hPa.

Figure 4. As Figure 1. but for vertical velocity from JRA-55. Note that the vertical velocity shown here is computed from the horizontal wind velocities using the continuity equation, thus the values represent averages for the horizontal resolution of JRA-55, which is approximately 55 km.

Figure 5. As Figure 4. but for July.

2.3 ECV: Upper-air Water Vapour

2.3.1 ECV Product: Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere

Name	Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere									
Definition	3D field of water vapour mixing ratios in the UTLS. Mixing ratio is the mole fraction of a substance in dry air.									
Unit	ppm									
Note	Consistency with temperature requirements for the same layer was used as a primary guiding consideration for horizontal resolution. Vertical resolution needed for determining fine layer cirrus and complex tropopause									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	15						
Resolution			В	100						
			Т	500						
Vertical	km		G	0.01						
Resolution			В	0.1						
			Т	0.25						
Temporal	h		G	3						
Resolution			В	6						
			Т	24						
Timeliness	h		G	1						
			В	120						
			Т	720						
Required	ppmv	•	G	0.1	Dessler et al. (2013)					
Measurement			В	0.25	Solomon et al. (2010)					
(2-sigma)			Т	0.5	Uncertainty requirements are based on interannual variability and data quality needed to study supersaturation and dehydration.					
Stability	ppmv/decade		G	<0.1	Dessler et al. (2013)					
			В	0.1	Solomon et al. (2010)					
			Т	0.25	Stability requirements are based on magnitudes of seasonal and longer-term trends.					
Standards and References	Dessler, A. E., water vapor fe America, 110(4	Schoeberl, edback. Pro 15), 18087	M. R., oceedir -1809	Wang, T ngs of the 1. doi:10	., Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric e National Academy of Sciences of the United States of .1073/pnas.1310344110					
	Solomon, S., R Plattner, GK. of Global Warm	osenlof, K. (2010). Co ning. Scien	H., Po ontribu ce, 327	ortmann, tions of S 7(5970),	R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & Stratospheric Water Vapor to Decadal Changes in the Rate 1219-1223. doi:10.1126/science.1182488					

2.3.2 ECV Product: Water Vapour Mixing Ratio in the Middle and Upper Stratosphere

Name	Water Vapour Mixing Ratio in the Middle and Upper Stratosphere									
Definition	3D field of water vapor mixing ratios in the middle and upper stratosphere. Mixing ratio is the									
11										
Note	ppin Consider switch homeorphyse requirements for the same layer used as a minute width.									
Note	consideration f	un tempera			his for the same layer was used as a primary guiding					
	use the same value as for the monortune that is significantly smaller.									
	use the sume v	ande as for	temp	Require	ements					
Item needed	Unit	Metric	[11]	Value	Notes					
Horizontal	km	etire	G	50						
Resolution			B	500						
			Т	1500						
Vertical	km		G	0.5						
Resolution			В	1						
			Т	3						
Temporal	h		G	3						
Resolution			В	6						
			Т	72						
Timeliness	h		G	1						
			В	168						
			Т	720						
Required	ppmv		G	0.1	Dessler et al. (2013)					
Measurement			В	0.25	Solomon et al. (2010)					
Uncertainty			Т	0.5	Uncertainty requirements are based on observed					
(2-sigma)	<i>.</i>		-		seasonal and interannual variability.					
Stability	ppmv/decade		G	<0.2	Dessler et al. (2013)					
			В	0.2	Solomon et al. (2010) Stability requirements are based on magnitudes of					
			1	0.5	longer-term trends.					
Standards	Dessler, A. E.,	Schoeberl,	M. R.,	Wang, T	., Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric					
and	water vapor fe	edback. Pro	oceedir	ngs of the	e National Academy of Sciences of the United States of					
References	America, 110(4	5), 18087	-1809	1. doi:10	.1073/pnas.1310344110					
					D. W. Dawiel J. C. Davie C. M. Caefard T. J. C.					
	Solomon, S., R	(2010) Co	H., PC	rtmann,	K. W., Daniei, J. S., Davis, S. M., Santord, T. J., &					
	of Global Warm	(2010). CC		7(5070)	1219-1223 doi:10.1126/science 1182/88					
		ing. Scient	ce, jz	(3370),	1219 1229, 001.10.1120/50000002400					

2.3.3 ECV Product: Water Vapour Mixing Ratio in the Mesosphere

Name	Water Vapour Mixing Ratio in the Mesosphere									
Definition	3D field of water vapour mixing ratios in the mesosphere. Mixing ratio is the mole fraction of a substance in dry air.									
Unit	ppm									
Note	Consistency with temperature requirements for the same layer was used as a primary guiding consideration for horizontal resolution. However, for the breakthrough, there is no justification to use the same value as for temperature that is significantly smaller.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B	50 500						
			Т	1500						
Vertical	km		G	0.5						
Resolution			В	1						
			Т	3						
Temporal	h		G	3						
Resolution			В	6						
			Т	72						
Timeliness	h		G	1						
			B	168						
				/20						
Required Measurement	ppmv		G	0.1	Dessler et al. (2013)					
Uncertainty			в	0.25	Solomon et al. (2010)					
(2-sigma)			I	0.5	seasonal and interannual variability.					
Stability	ppmv/decade		G	<0.2	Dessler et al. (2013)					
			В	0.2	Solomon et al. (2010)					
			Т	0.5	Stability requirements are based on magnitudes of longer-term trends.					
Standards and References	Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric water vapor feedback. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18087–18091. doi:10.1073/pnas.1310344110									
	Solomon, S., R Plattner, GK. of Global Warn	osenlof, K. (2010). Co ning. Scienc	H., Po ntribut ce, 327	rtmann, tions of S 7(5970),	R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & tratospheric Water Vapor to Decadal Changes in the Rate 1219-1223. doi:10.1126/science.1182488					

2.3.4 ECV Product: Relative Humidity in the Boundary Layer

Name	Relative Humidity in the Boundary Layer								
Definition	3D field of the relative humidity in the PBL. Relative humidity is the amount of water vapor in air divided by the temperature-dependent amount of water vapor in saturated air. RH can be expressed relative to water or ice saturation (to be specified in the metadata).								
Unit	%								
Note	Vertical resolution	tion is requi	ired fo	r calculat	ion of fluxes in the lower part of the boundary layer.				
	McCarthy, 200	7 notes sig	nifican	t spatial l	neterogeneity related to latitude of the observation.				
				Require	ments				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	15	McCarthy, (2007), consistency with T				
Resolution			В	100	McCarthy, (2007)				
			Т	500	McCarthy, (2007				
Vertical	m		G	1					
Resolution			В	10					
			Т	100					
Temporal	h		G	<1	Sub-hourly				
Resolution			В	6					
			Т	12					
Timeliness	h		G	1					
			В	120					
			Т	720					
Required	%RH		G	0.1					
Measurement			В	0.5					
(2-sigma)			Т	1					
Stability	%RH/decade		G	0.1	Assumption that stability is per measurement system				
			В	0.5	leads to partial cancellation across a network of sites				
			Т	1	performing measurements.				
Standards and References	McCarthy, 200	7 https://do	oi.org/	10.1002/	joc.1611				

2.3.5 ECV Product: Relative Humidity in the Free Troposphere

Name	Relative Humidity in the Free Troposphere							
Definition	3D field of the relative humidity in the free troposphere. Relative humidity is the amount of water vapor in air divided by the temperature-dependent amount of water vapor in saturated air. RH can be expressed relative to water or ice saturation (to be specified in the metadata).							
Unit	%							
Note	McCarthy, 2007 notes significant spatial heterogeneity related to latitude of the observation.							
Requirements								
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	km		G	15	McCarthy, (2007)			
			В	100	McCarthy, (2007)			
			Т	1000	McCarthy, (2007)			
Vertical	km		G	0.01				
Resolution			В	0.1				
			Т	1				
Temporal	h		G	<1	Sub-hourly			
Resolution			В	6				
			Т	12				
Timeliness	h		G	1				
			В	120				
			Т	720				
Required	%RH		G	0.1				
Uncertainty			В	0.5				
(2-sigma)			Т	1				
Stability	%RH/decade		G	0.1				
			В	0.5				
			Т	1				
Standards and References	McCarthy, 2007 https://doi.org/10.1002/joc.1611							

2.3.6 ECV Product: Relative Humidity in the Upper Troposphere and Lower Stratosphere

Name	Relative Humidity in the Upper Troposphere and Lower Stratosphere						
Definition	3D field of the relative humidity in the UTLS. Relative humidity is the amount of water vapor in air divided by the temperature-dependent amount of water vapor in saturated air. RH can be expressed relative to water or ice saturation (to be specified in the metadata).						
Unit	%						
Note	Relative humidity in climate projections is close to a conservative tracer, and thus changes very little. Therefore, to monitor Relative Humidity in a manner that is useful and informative to climate change, we require low uncertainty in trends. Vertical resolution needed for determining fine layer cirrus and complex tropopause.						
	Requirements						
Item needed	Unit	Metric	[1]	Value	Notes		
Horizontal Resolution	km		G B T	15 100 500			
Vertical Resolution	km		G B T	0.01 0.1 0.25			
Temporal Resolution	h		G B T	3 6 24			
Timeliness	h		G B T	1 120 720			
Required Measurement Uncertainty (2-sigma)	%RH		G B T	0.5 1 2	Dessler et al. (2013) Solomon et al. (2010) Uncertainty requirements are based on interannual variability and data quality needed to study supersaturation and dehydration.		
Stability	%RH/decade		G B T	<0.5 0.5 2	Dessler et al. (2013) Solomon et al. (2010) Stability requirements are based on magnitudes of seasonal and longer-term trends.		
Standards and References	 Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric water vapor feedback. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18087–18091. doi:10.1073/pnas.1310344110 Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & Plattner, GK. (2010). Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science, 327(5970), 1219-1223. doi:10.1126/science.1182488 						

2.3.7 ECV Product: Specific Humidity in the Boundary Layer

Name	Specific Humidity in the Boundary Layer								
Definition	3D field of the specific humidity in the PBL. The specific humidity is the ratio between the mass of water vapour and the mass of moist air.								
Unit	g Kg ⁻¹								
Note	Vertical resolution is required for calculation of fluxes in the lowermost boundary layer.								
	McCarthy, 2007 notes significant spatial heterogeneity related to latitude of the observation.								
Requirements									
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	15	McCarthy, (2007)				
Resolution			В	100	McCarthy, (2007)				
			Т	500	McCarthy, (2007)				
Vertical	m		G	1					
Resolution			В	10					
			Т	100					
Temporal	h		G	<1	Sub-hourly				
Resolution			В	1					
			Т	3					
Timeliness	h		G	1					
			В	120					
			Т	720					
Required	g Kg⁻¹		G	0.1					
Measurement			В	0.5					
(2-sigma)			Т	1					
Stability	g Kg⁻¹/		G	0.01					
	decade		В	0.05					
			Т	0.1					
Standards and References	McCarthy, 2007 https://doi.org/10.1002/joc.1611								
2.3.8 ECV Product: Specific Humidity in the Free Troposphere

Name	Specific Humidity in the Free Troposphere										
Definition	3D field of the specific humidity in the free troposphere. The specific humidity is the ratio between the mass of water vapour and the mass of moist air.										
Unit	g Kg ⁻¹										
Note	McCarthy 20	07) notes sig	nificar	nt spatial	heterogeneity related to latitude of the observation.						
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	15	McCarthy, (2007)						
Resolution			В	100	McCarthy, (2007)						
			Т	1000	McCarthy, (2007)						
Vertical	km		G	0.01							
Resolution			В	0.1							
			Т	1							
Temporal	l h		G	<1	Sub-hourly						
Resolution			В	1							
			Т	3							
Timeliness	h		G	1							
			В	120							
			Т	720							
Required	g Kg⁻¹		G	0.1							
Measurement			В	0.5							
(2-sigma)			Т	1							
Stability	g Kg⁻¹/		G	0.01							
	decade		В	0.05							
			Т	0.1							
Standards	McCarthy, 20)07 https://d	oi.org/	/10.1002	/ioc.1611						
and References	,,,=		. 3/								

2.3.9 ECV Product: Integrated Water Vapour

Name	Integrated Water Vapour (IWV)										
Definition	Total amount of water vapour present in a vertical atmospheric column.										
Unit	Kg m ⁻²										
Note	Implicit assumption that IWV is intrinsically linked to boundary layer and surface humidity given the predominance of the water vapour in these regions in contributing to the column total. Because IWV scales with temperature, uncertainty and stability should be split latitudinally. The applied values here are for mid-latitude locations. They would be stricter (more relaxed) for polar (tropical) locations and in winter than summer.										
				Require	ments						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G B T	25 250 1000							
Vertical Resolution			G B T	-	N/A						
Temporal Resolution	h		G B T	0.20 1 24							
Timeliness	h		G B T	24 120 720							
Required Measurement Uncertainty (2-sigma)	Kg m ⁻²		G B T	0.1 0.5 1	Varies by latitude (See note above)						
Stability	Kg m ⁻² / decade		G B T	0.1 0.2 0.5	Varies by latitude (See note above)						
Standards and References											

2.4 ECV: Earth radiation budget

2.4.1 ECV Product: Radiation Profile

Name	Radiation Profile												
Definition	Vertical profile of upward and downward Long Wave (LW) and Short Wave (SW) radiation components.												
Unit	W m ⁻²												
Note	For the application area of global climate monitoring no requirements exist. Thus, the requirements of the individual components are taken												
	Requirements												
Item needed	Unit	Metric	[1]	Value	Notes								
Horizontal	km		G	10									
Resolution			В	50									
			Т	100									
Vertical	km		G	1									
Resolution			В	2									
			Т	4									
Temporal	nporal h		G	1	resolving diurnal cycle								
Resolution			В	24									
			Т	720									
Timeliness	h		G	1									
			В	24									
			Т	720									
Required	W m ⁻²		G	0.1/0.2	Shortwave radiation/Longwave radiation								
Measurement			В	0.2/0.4	A factor of 2 was applied to gain the breakthrough								
(2-sigma)			Т	0.4/0.8	value and a factor of 4 was applied to estimate the threshold value.								
Stability	W m ⁻² /		G	0.025/0.05	Shortwave radiation/Longwave radiation								
	decade		В	0.05/0.1									
			Т	0.1/0.2									
Standards and References													

Name	Solar Spectral Irradiance										
Definition	Downward Short-Wave Irradiance at Top of the Atmosphere when measured as a function of wavelength it is the spectral irradiance.										
Unit	W m-2 µm-1 Downward Short-Wave Irradiance at Top of the Atmosphere is also known as Solar Spectral										
Note	Downward Sh Irradiance (SS	ort-Wave I)	Irradia	ance at Top	of the Atmosphere is also known as Solar Spectral						
				Requiren	nents						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	mm		G	10							
Resolution			В	50							
			Т	100							
Spectral			G								
resolution	< 290 nm		В	1nm							
	290-1000			2nm							
	nm										
	1000-1600			5nm							
	nm										
	1600-3200			10nm							
	nm										
	3200-6400 nm			20nm							
	6400-			40nm							
	10020nm										
	10020-			20000nm							
	100000 nm										
			Т								
Temporal	h		G	3							
Resolution			В	12	Current TSIS-1 Level 3 sampling						
			Т	24	Current TSIS-1 Level 3 sampling						
Timeliness	h		G	1							
			В	10							
			Т	90							
Required	%		G	0.3	(200-3000 nm)						
Uncertainty			В	1.5							
(2-sigma)			Т	3							
Stability	%/decade		G	0.03	(200-3000 nm)						
			В	0.15							
			Т	0.3							
Standards and References											

2.4.2 ECV Product: Solar Spectral Irradiance

Name	Downward Short-Wave Irradiance at Top of the Atmosphere										
Definition	Flux density of the solar radiation at the top of the atmosphere.										
Unit	W m ⁻²										
Note	This EVC is formerly/also known as Total Solar Irradiance (TSI).										
				Require	ments						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
Resolution			В	50							
			Т	100							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	l h		G	1							
Resolution			В	6	Current TSIS-1 Level 3 sampling						
			Т	24	Current TSIS-1 Level 3 sampling						
Timeliness	h		G	1							
			В	24							
			Т	720							
Required	W m ⁻²		G	0.04							
Uncertainty			В	0.08							
(2-sigma)			Т	0.12							
Stability	W m⁻²/		G	0.01							
	decade		В	0.02							
			Т	0.04							
Standards and References											

2.4.3 ECV Product: Downward Short-Wave Irradiance at Top of the Atmosphere

2.4.4 ECV Product: Upward Short-Wave Irradiance at Top of the Atmosphere

Name	Upward Short-Wave Irradiance at Top of the Atmosphere										
Definition	Flux density of solar radiation, reflected by the Earth surface and atmosphere, emitted to space at										
	the top of the atmosphere.										
Unit	W m-2										
Note	The measurand for this ECV is radiance (W·sr ⁻¹ ·m ⁻²). The current approach adopted by the Clouds and Earth's Radiant Energy System (CERES) is to derive irradiances (Wm ⁻²) from measured radiances using observed anisotropy factors over various scene types.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
Resolution			В	50							
			Т	100							
Vertical			G	-	N/A						
Resolution			В	-							
		Т	-								
Temporal	h		G	1							
Resolution			В	24	Resolves the diurnal cycle						
			Т	720	Allows a regional monitoring						
Timeliness	h		G	1							
			В	24							
			Т	720							
Required	W m-2		G	0.2	NOAA Tech Rep. NESDIS 134;						
Measurement			В	0.5	Ohring et al. (2005)						
(2-sigma)			Т	1	A factor of 2 was applied to gain the breakthrough value and a factor of 4 was applied to estimate the threshold value.						
Stability	W m-2/		G	0.06	NOAA Tech Rep. NESDIS 134						
	decade		В	0.15							
			Т	0.3							
Standards	Ohring et al. 2	2005: https:/	//doi.o	rg/10.11	75/BAMS-86-9-1303						
and	NOAA Tech Re	ep. NESDIS :	134: R	eport fro	m the Workshop on Continuity of Earth Radiation Budget						
References	(CERB) Obser	vations: Pos	t-CERE	S Requir	ements. John J. Bates and Xuepeng Zhao, May 2011						

2.4.5 ECV Product: Upward Long-Wave Irradiance at Top of the Atmosphere

Name	Upward Long-Wave Irradiance at Top of the Atmosphere											
Definition	Flux density of terrestrial radiation emitted by the Earth surface and the gases, aerosols and clouds of the atmosphere at the top of the atmosphere.											
Unit	W m-2											
Note	The measurand for this ECV is radiance (W·sr ⁻¹ ·m ⁻²). The current approach adopted by the Clouds and Earth's Radiant Energy System (CERES) is to derive irradiances (Wm ⁻²) from measured radiances using observed anisotropy factors over various scene types.											
		Requirements										
Item needed	Unit Metric [1] Value Notes											
Horizontal Resolution	km		G	10								
			Б Т	100								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	h		G	1								
Resolution	Resolution		В	24	Based on resolved diurnal cycle							
			Т	720	Based on resolved diurnal cycle							
Timeliness	ness h		G	1								
		В	24									
			Т	720								
Required	W m-2		G	0.2	NOAA Tech Rep. NESDIS 134;							
Uncertainty			В	0.5	Ohring et al. 2003 / 2005)							
(2-sigma)			Т	1	A factor of 2 was applied to gain the breakthrough value and a factor of 4 was applied to estimate the threshold value.							
Stability	W m-		G	0.05	NOAA Tech Rep. NESDIS 134							
	² /decade		В	0.1	Requirements for decadal stability and bias can be							
	т		0.2	derived from theoretical assumptions about the minimum anticipated signal to detect climate trends (Ohring 2004, 2005). Ohring et al. assume the required stability to be 1/5 of the expected climate signal. To detect a climate signal the stability should be better than 10 % of the uncertainty.								
Standards	Ohring et al. 2	2004: Satelli	te Inst	rument C	Calibration for Measuring Global Climate Change. NIST							
and	Rep. NISTIR 7	7047, 101 pp)									
References	Ohring et al. 2	2005: https:,	//doi.o	rg/10.11	75/BAMS-86-9-1303							
	NOAA Tech Re (CERB) Obser	ep. NESDIS : vations: Pos	134: R t-CERE	eport fro S Requir	m the Workshop on Continuity of Earth Radiation Budget rements. John J. Bates and Xuepeng Zhao, May 2011							

2.5 ECV Cloud Properties

2.5.1 ECV Product: Cloud cover

Name	Cloud Cover										
Definition	2D field of fraction of sky filled by cloud.										
Unit	Unitless (percentage)										
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	25	To perform regional climate monitoring.						
Resolution	tion				Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.						
			В	100	To perform continental climate monitoring						
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which \sim 500 km for horizontal resolution is sufficient.						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	Temporal h Resolution		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.						
			В	24	To perform climate monitoring of clouds on the global scale, a daily observing cycle will be sufficient.						
			Т	720	To characterize seasonal and interannual changes						
Timeliness	h		G	1							
			В	3							
			Т	12							
Required	%		G	3	Breakthrough is estimated with a factor of 2 times the						
Uncertainty			В	6	factor of 4 times the goal value.						
(2-sigma)			Т	12							
Stability	%/decade		G	0.3	Ohring et al. 2005						
			В	0.6	Breakthrough is estimated with a factor of 2 times the						
			Т	1.2	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.						
Standards and References	Ohring et a	. 2005: https	://doi.	org/10.1	175/BAMS-86-9-1303						

Name	Cloud Liquid Water Path										
Definition	2D Field of atmospheric water in the liquid phase (precipitating or not), integrated over the total column.										
Unit	Kg m ⁻²										
Note	This variable is identical to the also used "Cloud liquid water total column" which is given in g/m ² and often used in NWP and climate models. The uncertainty values are below would then by rescaled from Kg m ⁻² to g m ⁻² . These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	25	To perform regional climate monitoring.						
Resolution					Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics						
			В	100	To perform continental climate monitoring.						
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient						
Vertical			G		N/A						
Resolution			В								
			Т								
Temporal Resolution	remporal h Resolution		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.						
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient						
			Т	720	To characterize seasonal and interannual changes						
Timeliness	h		G	1							
			В	3							
			Т	12							
Required	Kg m ⁻²		G	0.05	Breakthrough is estimated with a factor of 2 times the						
Measurement			В	0.1	goal value, whereas the threshold is calculated with a factor of 4 times the goal value						
(2-sigma)			Т	0.2							
Stability	Kg m⁻²/		G	0.005	Ohring et al. 2005						
	decade		В	0.01	Breakthrough is estimated with a factor of 2 times the						
			Т	0.02	goal value, whereas the threshold is calculated with a factor of 4 times the goal value						
Standards and References	Ohring et al. 2	2005: https:,	//doi.o	rg/10.11	75/BAMS-86-9-1303						

2.5.2 ECV Product: Cloud Liquid Water Path

2.5.3 ECV Product: Cloud Ice Water Path

Name	Cloud Ice Water Path										
Definition	2D Field of atmospheric water in the solid phase (precipitating or not), integrated over the total column.										
Unit	kg m ⁻²										
Note	This variable is identical to the also used "Cloud ice water total column" which is given in g/m ² and often used in NWP and climate models. The uncertainty values are below would then by rescaled from kg/m ² to g/m ² . These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.										
				Requir	ements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	25	To perform regional climate monitoring.						
Resolution					Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.						
			В	100	To perform continental climate monitoring.						
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.						
Vertical	N/A		G	-	N/A						
Resolution			В	-							
		Т	-								
Temporal Resolution	h		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.						
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.						
			Т	720	To characterized seasonal and interannual changes						
Timeliness	h		G	1							
			В	3							
			Т	12							
Required	kg m ⁻²		G	0.05	Breakthrough is estimated with a factor of 2 times the						
Uncertainty			В	0.1	factor of 4 times the goal value.						
(2-sigma)			Т	0.2							
Stability	kg m⁻²/		G	0.005	Ohring et al. 2005						
	decade		В	0.01	Breakthrough is estimated with a factor of 2 times the						
			Т	0.02	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.						
Standards and References	Ohring et al	. 2005: https	://doi.	org/10.1	175/BAMS-86-9-1303						

Name	Cloud Drop Effective Radius										
Definition	Ratio of integral of water droplets size distribution in volume divided by integral in area (μ m).										
Unit	μm These security is the fact of the transfer to the										
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases. Requirements for this ECV is are for the cloud top										
				Require	ments						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.						
			В	100	To perform continental climate monitoring						
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal h Resolution		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.							
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.						
			Т	720	To characterize seasonal and interannual changes						
Timeliness	h		G	1							
			В	3							
			Т	12							
Required	μm	As metric	G	1/2	Breakthrough is estimated with a factor of 2 times the						
Uncertainty		uncertainty	В	2/4	factor of 4 times the goal value.						
(2-sigma)	(RMS) is chosen which is given for 1-sigma	(RMS) is chosen which is given for 1-sigma	Т	4/8							
Stability	µm /door.do		G	0.1/0.2	Values given separately for cloud water and ice						
	/decade		В	0.2/0.4	specifies stability and accuracy requirements separately						
			Т	0.4/0.8	for cloud water particle size as percentage forcing, and ice particle size as percentage feedback.						
					Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.						
Standards	Ohring et a	l. 2005: https	://doi.	org/10.11	75/BAMS-86-9-1303						
and References											

2.5.4 ECV Product: Cloud Drop Effective Radius

2.5.5	ECV	Product:	Cloud	Optical	Depth
-------	-----	-----------------	-------	----------------	-------

Name	Cloud Optical Depth								
Definition	Effective depth of a cloud from the viewpoint of radiation extinction. $OD = exp(-K.\Delta z)$ where K is the extinction coefficient [km-1], Δz the vertical path [km] between the base and the top of the cloud and the reference wavelength to be specified in the metadata.								
Unit	Dimensionless (percentage)								
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	25	To perform regional climate monitoring.				
Resolution					Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.				
			В	100	To perform continental and regional climate monitoring higher spatial resolution is needed				
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.				
Vertical	ertical esolution		G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	Temporal h Resolution		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.				
			В	24	To perform Performing climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.				
			Т	720	To characterize seasonal and interannual changes				
Timeliness	h		G	1					
			В	3					
			Т	12					
Required	%		G	20	Breakthrough is estimated with a factor of 2 times the				
Measurement Uncertainty			В	40	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.				
(2-sigma)			Т	80					
Stability	%/decade		G	2.0	Ohring et al. 2005 lists the stability requirements for				
			В	4.0	cloud optical thickness as 2% with a 10% accuracy.				
			Т	8.0	Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.				
Standards and References	Ohring et a	l. 2005: https	://doi.	org/10.1	175/BAMS-86-9-1303				

Name	Cloud Top Temperature									
Definition	Temperature of the top of the cloud (highest cloud in case of multi-layer clouds).									
Unit	К									
Note	These requi improved k	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.								
				Requir	ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	Horizontal km Resolution		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.					
			В	100	To perform continental and regional climate monitoring higher spatial resolution is needed					
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.					
Vertical			G	-	N/A					
Resolution	esolution		В	-						
			Т	-						
Temporal Resolution	Temporal h Resolution		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.					
			В	24	To perform Performing climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.					
			Т	720	To characterize seasonal and interannual changes					
Timeliness	h		G	1						
			В	3						
			Т	12						
Required	К		G	2	Breakthrough is estimated with a factor of 2 times the					
Uncertaintv			В	4	factor of 4 times the goal value.					
(2-sigma)			Т	8						
Stability	K/decade		G	0.2	Ohring et al. 2005 lists the stability requirement for					
			В	0.4	cloud top temperature as 0.2K/cloud emissivity per decade with accuracy as 1 K/cloud emissivity per					
			Т	0.8	decade.					
					Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
Standards and References	Ohring et a	l. 2005: https	://doi.	org/10.1	175/BAMS-86-9-1303					

2.5.6 ECV Product: Cloud Top Temperature

2.5.7 ECV Product: Cloud Top Height

Name	Cloud Top Height								
Definition	Height of the top of the cloud (highest cloud in case of multi-layer clouds.								
Unit	km								
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases. 3-D cloud top information are required where possible. This can be achieved via a combination of cloud optical depth vs cloud top height histograms								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	tal km on		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.				
			В	100	To perform continental and regional climate monitoring higher spatial resolution is needed				
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which \sim 500 km for horizontal resolution is sufficient.				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	Temporal h Resolution		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.				
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.				
			Т	720	To characterize seasonal and interannual changes				
Timeliness	h		G	1					
			В	3					
			Т	12					
Required	km		G	0.30	Breakthrough is estimated with a factor of 2 times the				
Uncertainty			В	0.60	factor of 4 times the goal value.				
(2-sigma)			Т	1.2	, j				
Stability	km/decade		G B T	0.03 0.06 0.12	Ohring et al. 2005 lists the required stability for cloud top height as 30 m/decade with accuracy of 150 m/decade. Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.				
Standards and References	Ohring et al	. 2005: https	s://doi.	.org/10.1	175/BAMS-86-9-1303				

2.6 ECV: Lightning

2.6.1 ECV Product: Schumann Resonances

Name	Schumann Resonances									
Definition	Extremely Low Frequency (ELF) magnetic and electric field of the three first resonance modes (8 Hz, 14 Hz, 20 Hz).									
Unit	pT ² Hz ⁻¹ (ma	gnetic field);	V ² m ⁻²	² Hz ⁻¹ (ele	ectric field)					
Note	Regular measurements of two horizontal magnetic field components at a location are enough to monitor globally Schumann Resonances. The magnetic field should be monitored at a level of ~0.1 pT ² Hz ⁻¹ . Additionally, to the magnetic measurements, one vertical electric measurement would document the full transverse electromagnetic (TEM) waveguide component at any given location. Note the estimate of the electric intensity assumes the wave impedance is half that of free space (377 element). In this context, the other is field should be menitered at a level of $\sim 2.2 \times 10.0 \text{ M}^2 \text{ m}^2 \text{ M}^{-1}$.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal			G	-	One value represents the globe, so no horizontal					
Resolution			В	-	resolution required					
			Т	-						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	d		G	1/24	Suitable for investigation of the strong diurnal variation of tropical "chimney" regions and for use in multi-station inversion methods for global lightning activity					
			В	1	Suitable for investigation of intraseasonal variations (5- day wave; MJO)					
			Т	30	Suitable for investigation of the global seasonal and annual variation, and the interannual ENSO variation					
Timeliness	d		G	1	For use in building a representative monthly estimate for climate purposes					
			В	-						
			Т	30	For climate-related studies; responsiveness of lightning to long-term temperature changes					
Required Measurement Uncertainty	fT ² Hz ⁻¹		G	1	Absolute coil calibration is feasible at the 1% level/ (Calibration of the vertical electric field is difficult, but possible)					
(2-sigma)			В	-						
			Т	5	Absolute coil calibration at the 5% level					
Stability	fT ² Hz ⁻¹		G	1	Given lightning sensitivity to temperature at the 10% per K level, one needs absolute calibration and stability at the 1% level to see fraction of 1K temperature changes					
			В	-						
			Т	5	Coil calibration should be checked and maintained to at least this level					
Standards and	Nickolaenko Publisher, D	, A.P. and M. ordrecht, Lor	Hayak Idon, 2	awa, Res 2002.	sonances in the Earth-ionosphere cavity. Kluwer Academic					
References	Nickolaenko Electromagn York/Dordre	, A.P. and M. letic Resonan cht/London, 3	Hayak ce in t 2014.	awa, Sch he Earth-	numann Resonance for Tyros: Essentials of Global -ionosphere Cavity. Springer, Tokyo/Heidelberg/New					
	Polk, C., Sch CRC Press, E	numann Reso Boca Raton, F	nances lorida,	s, in CRC 1982.	Handbook of Atmospherics. Volume 1, Ed., H. Volland,					
	Sátori G, V. In: Betz, HD Applications	Mushtak, and , U. Schuma : Review of M	d E. Wi nn and Iodern	illiams, S P. Laroc Lightning	chumann resonance signature of global lightning activity. he (eds), Lightning: Principles, Instruments and g Research. Springer, Berlin, pp 347–386. 2009.					
	Sentman, D. Electrodynar	.D., Schumar nics, CRC Pre	nn Rese ess, Bo	onances. Ica Raton	In Volland, H., Ed., Handbook of Atmospheric , 267-296, 1995.					

2.6.2 ECV Product: Total lightning stroke density

Name	Total lightning stroke density									
Definition	Total number of detected strokes in the corresponding time interval and the space unit. The space unit (grid box) should be on the order of the horizontal resolution and the accumulation time to the observing cycle.									
Unit	Strokes per km	² y ⁻¹								
Note	Data sets at the 1-map-per-month level require limited data storage, and thus should be simply posted on a publicly accessible website. The larger data sets reaching down to global resolutions of 0.1 degree with time resolution of a few hours should be maintained by the network managers and provided to the user community as needed. Metadata should include sufficient information to validate the detection efficiency at the maximum spatial and temporal scales.									
Requirements										
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	Degree pixels		G	0.1x0.1	Thunderstorms are complex, with different dynamics in different parts of the storm, for example the updraft region and the trailing stratosphere region. Therefore, the net influence on global currents and climatology is likely to be very different from different sub-storm scales.					
			В	0.25x0.25	This is the convection scale and will help identify climate variability at the storm level					
			Т	1x1	Ideally these data would be provided as both maps as well as digital files, along with the Metadata with adequate time resolution to address both long term and short term detection efficiency variations within these data sets.					
Vertical	N/A		G	-	N/A					
Resolution			В	-	N/A					
			Т	-	N/A					
Temporal Resolution	d		G	1/24	Lifetime of thunderstorm cell, diurnal cycle. For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time					
			В	1	Weather patterns, weekly and intraseasonal patterns like MJO					
			Т	30	Climate Scale					
Timeliness	d		G	10	For high resolution climatology. It can be important for special occasions to see direct impacts of events or mitigation immediately in order to react.					
			В	30	Forecasting and model input					
			Т	365	For lightning climatology studies the provision of yearly data within one year of data collection, and to prepare their data back as far as it is available from their network is necessary.					
Required Measurement Uncertainty	dimensionless		G	1	For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time					
(Z-Sigilia)			В	-						
			Т	15	For climatologies					
Stability	%		G	1	For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time					
			В	-						
				10	For climatologies					
Standards and References	Algorithm Theo Lightning Mapp Meteosat Third GOES-R Produc Nag et al., 201	retical Ba: er (GLM, Generatic t Definitic 5	sis Doo Goodm on (MT on and	cument (ATB han et al., 20 G) End-User Users' Guide	13) and MTG Lightning Imager data (Eumetsat, 2014) Requirements Document (EURD) (Eumetsat, 2010) (PUG, Rev. 2018) and Data Book (Rev., 2019)					
	Virts, K.S. et al BAMS, 94 (9),	, 2013, H https://do	ighligh <mark>)i.org/</mark> 1	ts of a New (L0.1175/BAM	Ground-Based, Hourly Global Lightning Climatology, S-D-12-00082.1					

GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1 November 2018 DCN 7035538, Revision 2.0, available

at https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf.

GOES-R Series Data Book, 2019. CDRL PM-14 Rev A. May 2019, NOAA-NASA. Available at https://www.goes-r.gov/downloads/resources/documents/GOES-RSeriesDataBook.pdf.

3. ATMOSPHERIC COMPOSITION

3.1 ECV: Greenhouse Gases

3.1.1 ECV Product: N₂O mole fraction

Name	N ₂ O mole fraction									
Definition	3D field of amount of N_2O (expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles).									
Unit	ррь									
Note	N_2O was not an ECV product in the GCOS IP but should be added as it is a strong GHG.									
				Require	ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	100 500						
Vortical	km		C I	2000						
Resolution	КШ		B	1						
			т	3						
Temporal	h		G	1						
Resolution			B	1 24						
			т	168						
Timeliness	d		G	1						
	-		В	30						
			Т	180						
Required Measurement	ppb		G	0.05	Expert judgement and GAW Rep. No. 242 network compatibility					
Uncertainty (2-sigma)			В	0.1	Expert judgement and GAW Rep. No. 242 extended network compatibility					
			Т	0.3	Expert judgement, larger than B.					
Stability	ppb/decade		G	0.05	Within accuracy					
			В	0.05	Within accuracy/2					
			Т	0.2	Within accuracy/2					
Standards and References	GAW Report, 242. 19 th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017) Crotwell Andrew; Steinbacher M.; World Meteorological Organization (WMO) - WMO, 2018									
	https://librar	y.wmo.int/d	oc_nui	m.php?e>	plnum_id=5456					
	GAW Report, Related Meas Meteorologic Organization	255. 20th W surement Teo al (WMO) - WN	/MO/I/ chniqu 10, 20	AEA Meet es (GGM ⁻ 020 https	ing on Carbon Dioxide, Other Greenhouse Gases and [-2019] Crotwell A.; Lee, H.; Steinbacher M.; World ://library.wmo.int/doc_num.php?explnum_id=10353					

3.1.2 ECV Product: CO₂ mole fraction

Name	CO ₂ mole fraction									
Definition	3D field of amount of CO_2 (Carbon dioxide, expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles).									
Unit	ppm									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	100 500 2000						
Vertical	km		G	0.1						
Resolution			В	1						
			Т	3						
Temporal	h		G	1						
Resolution			В	24						
			Т	168						
Timeliness	day		G	1						
			В	30						
			Т	180						
Required	ppm		G	0.1	GAW Rep. No. 242					
Measurement			В	0.2	GAW Rep. No. 242					
(2-sigma)			Т	0.5	Expert judgement, larger than B.					
Stability	ppm/decade		G	0.1	Within accuracy					
			В	0.1	Within accuracy/2					
			Т	0.3	Within accuracy/2					
Standards and References	T 0.3 Within accuracy/2 GAW Report, 242. 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017) Crotwell Andrew; Steinbacher M.; World Meteorological Organization (WMO) - WMO, 2018 https://library.wmo.int/doc_num.php?explnum_id=5456 GAW Report, 255. 20th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2019) Crotwell A.; Lee, H.; Steinbacher M.; World Meteorological Organization (WMO) - WMO, 2020 https://library.wmo.int/doc_num.php?explnum_id=10353									

3.1.3 ECV Product: CO₂ column average dry air mixing ratio

Name	CO2 column average dry air mixing ratio									
Definition	2D column integrated number of molecules of the target gas (CO2) divided by that of dry air expressed in mole fraction.									
Unit	µmol mol ⁻¹									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	1	imaging					
Resolution			В	5	~0C0-2/3					
			Т	10	CO_2M , CEOS document - LEO, GEO					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	h		G	1	geostationary					
Resolution			B	12	Blue report					
			Т	72	CO ₂ M					
Timeliness	d		G	1						
			В	/						
Demotored				14	1					
Kequired Measurement	ppm		G	0.6	I-sigma: U.3ppm					
Uncertainty			P	1						
(2-sigma)			D	T	Expert judgment based on improving CO ₂ M					
					requirements					
			Т	1.6	1-sigma: 0.8ppm					
					CO ₂ M requirements, WMO Report #242					
Stability	ppm/decade		G	0.1	Within accuracy / 5					
			В	0.2	Within accuracy / 5					
			Т	0.3	Within accuracy / 5					
Standards and	Blue Report, 2	2015: Towa	ards a E	uropean O	perational Observing System to Monitor Fossil CO ₂					
References	Ped Penort 2	017: Bacoli		us.eu/sites	Model Components and Eurotional Architecture					
	https://www.		eu/sites	/default/fil	es/2019-09/CO2 Red Report 2017 ndf					
	Green Report.	2019: Nee	ds and	Hiah Level	Requirements for in situ Measurements					
	https://www.o	copernicus.	eu/sites	/default/fil	es/2019-09/CO2 Green Report 2019.pdf					
	CO₂M				, ,					
	https://www. ndidates	esa.int/App	lications	s/Observin	g_the_Earth/Copernicus/Copernicus_High_Priority_Ca					
	MRD, v 2.0:	ultimedia or	a int/d	oce/EarthO	hearvation/CO2M_MPD_v2_0_lesued20100027.pdf					
	FSA Climate (Thange Initi	iative ((CI) User R	Requirements Document Version 2.1 (URDv2.1) for					
	the Essential cci.org/?q=nc	Climate Var de/85	iable (E	CV) Green	house Gases (GHG) http://www.esa-ghg-					
	CEOS docume	ents: http://	/ceos.or	g/ourwork	/virtual-constellations/acc/					
	CEOS GHG re	port/white	paper:							
	http://ceos.or VC_GHG_Whit	g/documen te_Paper_P	t_mana ublicatio	gement/Vi on_Draft2_	rtual_Constellations/ACC/Documents/CEOS_AC- 20181111.pdf					
	GAW Report, Related Measu Meteorologica	242. 19th V urement Teo I Organizati	VMO/IA chnique on (WM	EA Meeting s (GGMT-2 IO) - WMO	on Carbon Dioxide, Other Greenhouse Gases and 017) Crotwell Andrew; Steinbacher M.; World , 2018					
	https://library	.wmo.int/d	oc_num	n.php?expli	num_id=5456					
	GAW Report, Related Measu Meteorologica	255. 20th V urement Te I	VMO/IA chnique	EA Meeting s (GGMT-2	on Carbon Dioxide, Other Greenhouse Gases and 019) Crotwell A.; Lee, H.; Steinbacher M.; World					
	Organization ((WMO) - WI	40, 202	0 https://	ibrary.wmo.int/doc_num.php?explnum_id=10353					

3.1.4 ECV Product: CH₄ mole fraction

Name	CH ₄ mole fraction									
Definition	3D field of amount of CH ₄ (Methane, expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles).									
Unit	ppb									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	100						
Resolution			В	500						
			Т	2000						
Vertical	km		G	0.1						
Resolution			В	1						
T 1	L.			3						
Resolution	n		G	1						
			Б	24						
Timeliness	d		G	100						
Timeliness	u		B	30						
			Т	180						
Required	ppb		G	1	Expert judgement based on GAW Rep. No. 242 network					
Measurement					compatibility					
Uncertainty (2-sigma)			В	2	Expert judgement based on GAW Rep. No. 242 extended network compatibility					
			Т	5	Expert judgment, larger than B.					
Stability	ppb/decade		G	1	Within accuracy					
			В	1	Within accuracy/2					
			Т	3	Within accuracy/2					
Standards and References	Green Report https://www GAW Report, Related Meas Meteorologica https://librar GAW Report, Related Meas	242. 19th W 242. 19th W surement Teo al Organizati y.wmo.int/do 255. 20th W surement Teo	ds and eu/site /MO/I/ chniqu on (Wi oc_nui /MO/I/ chniqu	AEA Meet es (GGMT MO) - WN m.php?ex AEA Meet es (GGMT	vel Requirements for in situ Measurements /files/2019-09/CO2_Green_Report_2019.pdf ing on Carbon Dioxide, Other Greenhouse Gases and T-2017) Crotwell Andrew; Steinbacher M.; World 40, 2018 cplnum_id=5456 ing on Carbon Dioxide, Other Greenhouse Gases and T-2019) Crotwell A.; Lee, H.; Steinbacher M.; World					
	Organization	ai (WMO) - WN	10, 20	20 https:	://library.wmo.int/doc_num.php?explnum_id=10353					

3.1.5 ECV Product: CH₄ column average dry air mixing ratio

Name	CH₄ column average dry air mixing ratio								
Definition	2D column integrated number of molecules of the target gas (CH ₄) divided by that of dry air expressed in mole fraction.								
Unit	nmol mol ⁻¹								
Note	Temporal resolution and timeliness are kept the same/compatible with CO ₂								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	0.3	Imaging, permafrost region				
Resolution			В	1	Improved TROPOMI				
			Т	10	TROPOMI/S5P				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	h		G	1	Geo constellation + LEO				
Resolution			В	12	In the middle between threshold and goal				
			Т	72	TROPOMI revisit, single geostationary				
Timeliness	d		G	1					
			В	7					
			Т	14					
Required Measureme nt	ppb		G	7	1-sigma: 3.5ppb GeoCARB and MERLIN mission requirements, 0.2% of current CH4 burden				
(2-sigma)			В	10	1-sigma:5ppb Expert judgement based on expected improvement of TROPOMI/S5P				
			Т	20	1-sigma: 10ppb TROPOMI/S5P, CEOS doc, advancing from GCOS 2011				
Stability	ppb/deca		G	1	Within accuracy / 5				
	de		В	2	within accuracy / 5				
			Т	4	within accuracy / 5				
Standards and References	Blue Report emissions h Red Report, https://www Green Report https://www CO ₂ M:https Candidates MRD, v 2.0 https://esai ESA Climate Essential Cl CEOS docum CEOS GHG http://ceos VC_GHG_W GAW Repor Related Mea Meteorologi https://libra GAW Repor Related Mea Meteorologi Organizatio	2015: T ittps://ww , 2017: Ba w.copernic ort, 2019: w.copernic ://www.es : multimedia e Change imate Var ments:http report/wh .org/docur /hite_Pape t, 242. 19 asurement ical Organ ary.wmo.in t, 255. 20 asurement ical n (WMO)	T owards w.cope seline cus.eu/ Needs cus.eu/ sa.int/A a.esa.in Initiativ iable (E c://ceo ite pap ment_r r_Publ th WM0 : Techn ization nt/doc_ th WM0,	4 s a Europ ernicus.eu Requirem sites/defa and High sites/defa application ht/docs/E ve (CCI) ECV) Gree s.org/our er: nanagem ication_D D/IAEA M iques (GG (WMO) - num.php D/IAEA M iques (GG	within accuracy / 5 ean Operational Observing System to Monitor Fossil CO ₂ h/sites/default/files/2019-09/CO2_Blue_report_2015.pdf bents, Model Components and Functional Architecture ault/files/2019-09/CO2_Red_Report_2017.pdf Level Requirements for in situ Measurements ault/files/2019-09/CO2_Green_Report_2019.pdf ns/Observing_the_Earth/Copernicus/Copernicus_High_Priority_ arthObservation/CO2M_MRD_v2.0_Issued20190927.pdf User Requirements Document Version 2.1 (URDv2.1) for the enhouse Gases (GHG) http://www.esa-ghg-cci.org/?q=node/85 work/virtual-constellations/ACC/Documents/CEOS_AC- raft2_20181111.pdf eeting on Carbon Dioxide, Other Greenhouse Gases and GMT-2017) Crotwell Andrew; Steinbacher M.; World WMO, 2018 Prexplnum_id=5456 eeting on Carbon Dioxide, Other Greenhouse Gases and GMT-2019) Crotwell A.; Lee, H.; Steinbacher M.; World tps://library.wmo.int/doc_num.php?explnum_id=10353				

3.2 ECV: Ozone

3.2.1 ECV Product: Ozone mole fraction in the Troposphere

Name	Ozone mole maction in the troposphere									
Definition	3D field of an all constituer	mount of O nts in dry a	3 (expr ir (also	essed in n expressed	noles) in the troposphere divided by the total amount of d in moles).					
Unit	% (directly t	ransferrabl	e to mi	xing ratios	s, mol/mol)					
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote									
	corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.									
				Requirer	nents					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	1	1, 2, 3, 4,5,6,7					
Resolution			В	20						
			Т	100						
Vertical	km		G	1	1,2,3,4,5,6,7					
Resolution			В	3						
			Т	5						
Temporal	d		G	1/24	1, 2, 3, 4,5,6,7					
Resolution			В	1/4						
			Т	30						
Timeliness	d		G	1/24						
			Б	1						
Poquirod	0/2		Г С	30	1 2 3 4 5 6 7 8					
Measurement	70		B	5	Requirements for uncertainty (%) and stability					
			Т	10	(%/decade) translate to wide mixing ratio requirement					
(z-sigina)					ranges based on a 20 to 80 ppb range of ozone mixing ratios in the troposphere					
Stability	%/decade		G	<1	1, 2, 3, 4,5,6,7,8					
ocubiiicy	, of accure		В	2	Requirements for uncertainty (%) and stability					
			Т	3	(%/decade) translate to wide mixing ratio requirement ranges based on a 20 to 80 ppb range of ozone mixing ratios in the troposphere.					
Standards and	1. Ozone Cli	mate Chan	ge Initi	ative User	Requirements Document					
References	http://cci.es	a.int/sites/	default,	/files/filede	epot/incoming/Ozone_cci_urd_v3.0_final.pdf					
	2. WMO (Wo Scientific Ass Report No. 5	orld Meteoro sessment o 8, 588 pp.,	ological f Ozone , Genev	l Organizat e Depletior va, Switzer	cion), Stratospheric Ozone Changes and Climate in 1: 2018, Global Ozone Research and Monitoring Project– 1and, 2018.					
	https://www sment.pdf	.esrl.noaa.	gov/cso	d/assessm	ents/ozone/2018/downloads/Chapter5_2018OzoneAsses					
	3. Climate M	lonitoring L	Jser Gr	oup CCI Re	equirements Baseline Documents					
	http://ensen	nbles-eu.m	etoffice	.com/cmu	g/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf					
	4. WMO (Wo	orld Meteor	ological	Organizat	tion), Update on Global Ozone: Past, Present and Future					
	in Scientific / Project-Repo 2018. https: eAssessment	Assessmen [:] ort No. 58, //www.esrl pdf	t of Ozo 588 pp .noaa.o	one Deplet ., Geneva, gov/csd/as	ion: 2018, Global Ozone Research and Monitoring Switzerland, sessments/ozone/2018/downloads/Chapter3_2018Ozon					
	5. Gaudel, A and trends o evaluation, E	., et al. (20 f troposphe lem. Sci. A)18), Ti eric ozo anth., 6	ropospheri ne relevar (1), 39, ht	c Ozone Assessment Report: Present-day distribution at to climate and global atmospheric chemistry model https://doi.org/10.1525/elementa.291					

6. Tarasick, D. W., I. E. Galbally, O. R. Cooper, M. G. Schultz, G. Ancellet, T. Leblanc, T. J. Wallington, J. Ziemke, X. Liu, M. Steinbacher, J. Staehelin, C. Vigouroux, J. W. Hannigan, O.

García, G. Foret, P. Zanis, E. Weatherhead, I. Petropavlovskikh, H. Worden, M. Osman, J. Liu, K.-L. Chang, A. Gaudel, M. Lin, M. Granados-Muñoz, A. M. Thompson, S. J. Oltmans, J. Cuesta, G. Dufour, V. Thouret, B. Hassler, T. Trickl and J. L. Neu (2019), Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elem Sci Anth, 7(1), DOI: http://doi.org/10.1525/elementa.376

7. Galbally, IE, Schultz, MG, Buchmann, B, Gilge, S, Guenther, F, Koide, H, Oltmans, S, Patrick, L, Scheel, H-E, Smit, H, Steinbacher, M, Steinbrecht, W, Tarasova, O, Viallon, J, Volz-Thomas, A, Weber, M, Wielgosz, R and Zellweger, C. (2013), Guidelines for Continuous Measurement of Ozone in the Troposphere, GAW Report No 209, Publication WMO-No. 1110, ISBN 978-92-63-11110-4, Geneva, Switzerland: World Meteorological Organisation, 76. http://www.wmo.int/pages/prog/arep/gaw/gaw-reports.html

8. Fischer, E.V., Jaffe, D.A. and Weatherhead, E.C., 2011. Free tropospheric peroxyacetyl nitrate (PAN) and ozone at Mount Bachelor: causes of variability and timescale for trend detection. Atmospheric Chemistry & Physics Discussions, 11(2).

3.2.2 ECV Product: Ozone mole fraction in the Upper Troposphere/ Lower Stratosphere (UTLS)

Name	Ozone mole fraction in the Upper Troposphere/ Lower Stratosphere (UTLS)										
Definition	3D field of an (UTLS) divide	mount of O ed by the to	3 (expr otal am	ressed in n nount of all	noles) in the upper troposphere/lower stratosphere I constituents in dry air (also expressed in moles).						
Unit	% (directly t	ransferrabl	e to mi	xing ratios	s, mol/mol)						
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are										
	not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the features.										
	Doguiromente										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km	Methe	G	10	1 2 3 4 5						
Resolution	KIII		B	50	1, 2, 3, 7, 3						
			Т	200							
Vertical	km		G	0.5	1.2.3.4.5						
Resolution			В	1							
			Т	3							
Temporal	d		G	1/4	1, 2, 3, 4,5						
Resolution			В	1							
			Т	30							
Timeliness	d		G	1/4							
			В	1							
			Т	30							
Required	%		G	2	1, 2, 3, 4,5						
Uncertainty			В	5	Requirements for uncertainty (%) and stability (%/decade) translate o wide mixing ratio requirement						
(2-sigma)			I	10	ranges based on a 50 ppb to 3 ppm range of ozone						
e			6		mixing ratios in the UTLS.						
Stability	%/decade		G	1	1, 2, 3, 4,5 Dequirements for uncertainty (0) and stability						
			Б	2	(%/decade) translate to wide mixing ratio requirement						
			'	5	ranges based on a 50 ppb to 3 ppm range of ozone						
Standards and	1. Ozone Cli	mate Chan	ge Initi	ative User	Requirements Document						
References	http://cci.es	a.int/sites/o	- default,	/files/filede	epot/incoming/Ozone_cci_urd_v3.0_final.pdf						
	2. WMO (Wo	orld Meteoro	ological	l Organizat	ion), Stratospheric Ozone Changes and Climate in						
	Scientific Ass Report No. 5	sessment o 8, 588 pp.,	f Ozone Genev	e Depletior va, Switzer	n: 2018, Global Ozone Research and Monitoring Project- land, 2018.						
	https://www sment.pdf	.esrl.noaa.	gov/cso	d/assessme	ents/ozone/2018/downloads/Chapter5_2018OzoneAsses						
	3. Climate M	lonitoring U	lser Gro	oup CCI Re	equirements Baseline Documents						
	http://ensem	nbles-eu.m	etoffice	.com/cmu	g/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf						
	4. WMO (Wo	orld Meteor	blogical	l Organizat	cion), Update on Global Ozone: Past, Present and Future						
	Project–Repo 2018. https://	ort No. 58, //www.esrl t.pdf	588 pp .noaa.g	one Deplet ., Geneva, gov/csd/as	sessments/ozone/2018/downloads/Chapter3_2018Ozon						
	5. Gaudel, A and trends o evaluation, E	., et al. (20 f troposphe Elem. Sci. A)18), Ti eric ozo .nth., 6	ropospheri ne relevan (1), 39, <mark>ht</mark>	c Ozone Assessment Report: Present-day distribution to climate and global atmospheric chemistry model tps://doi.org/10.1525/elementa.291						

3.2.3	ECV Product: Ozone mole fraction in the Middle and Upper	
	Stratosphere	

Name	Ozone mole fraction in the Middle and Upper Stratosphere									
Definition	3D field of amount of O3 (expressed in moles) in the Middle and Upper Stratosphere divided by the total amount of all constituents in dry air (also expressed in moles).									
Unit	% (directly transferrable to mixing ratios, mol/mol)									
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the									
	rootnotes.			Denti						
The second and	Requirements									
Item needed	Unit	Metric	[1]	value	Notes					
Horizontal Resolution	km		G B T	20 100 500	1, 2, 3, 4					
Vertical Resolution	km		G B T	1 3 10	1,2,3,4					
Temporal Resolution	d		G B T	1/4 1 30	1, 2, 3, 4					
Timeliness	d		G B T	1/4 1 30						
Required Measurement Uncertainty (2-sigma)	%		G B T	5 10 15	1, 2, 3, 4 Requirements for uncertainty (%) and stability (%/decade) translate to wide mixing ratio requirement ranges based on a 3 to 10 ppm range of ozone mixing ratios in the middle and upper stratosphere.					
Stability	%/decade		G B T	1 2 3	1, 2, 3, 4 Requirements for uncertainty (%) and stability (%/decade) translate to wide mixing ratio requirement ranges based on a 3 to 10 ppm range of ozone mixing ratios in the middle and upper stratosphere.					
Standards and References	ratios in the middle and upper stratosphere.1. Ozone Climate Change Initiative User Requirements Documenthttp://cci.esa.int/sites/default/files/filedepot/incoming/Ozone_cci_urd_v3.0_final.pdf2. WMO (World Meteorological Organization), Stratospheric Ozone Changes and Climate in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project- Report No. 58, 588 pp., Geneva, Switzerland, 2018.https://www.esrl.noaa.gov/csd/assessments/ozone/2018/downloads/Chapter5_2018OzoneAsses sment.pdf3. Climate Monitoring User Group CCI Requirements Baseline Documents http://ensembles-eu.metoffice.com/cmug/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf4. WMO (World Meteorological Organization), Update on Global Ozone: Past, Present and Future in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58, 588 pp., Geneva, Switzerland, 2018. https://www.esrl.noaa.gov/csd/assessments/ozone/2018/downloads/Chapter3_2018Ozone Assessment.pdf									

3.2.4 ECV Product: Ozone Tropospheric Column

Name	Ozone Trop	ospheric (Colum	n	Ozone Tropospheric Column							
Definition	2D field of total amount of O3 molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.											
Unit	% (directly transferrable to Dobson units)											
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade.											
	To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes											
				Require	nents							
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal Resolution	km		G	5	1, 2, 3, 4, 5							
			T	100								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	d		G	1/24	1, 2, 3, 4, 5							
Resolution			В	1/4								
			Т	30								
Timeliness	d		G 1/24									
			В	1								
			T	30								
Required Measurement	%		G	5	1, 2, 3, 4, 5							
Uncertainty			Т	10	(%/decade) translate to wide Dobson Unit requirement							
(2-sigma)			'	15	ranges based on a 20 to 45 DU range of ozone							
Stability	%/decade		G	1	1, 2, 3, 4,5							
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		В	2	Requirements for uncertainty (%) and stability							
			Т	3	(%/decade) translate to wide Dobson Unit requirement ranges based on a 20 to 45 DU range of ozone tropospheric columns.							
Standards and	1. Ozone Clir	nate Chang	ge Initia	ative User	Requirements Document							
References	http://cci.es	a.int/sites/	default,	/files/filede	epot/incoming/Ozone_cci_urd_v3.0_final.pdf							
	2. WMO (Wo Scientific Ass Report No. 5	rld Meteoro sessment o 8, 588 pp.,	ological f Ozone , Genev	Organizat e Depletior /a, Switzer	ion), Stratospheric Ozone Changes and Climate in 1: 2018, Global Ozone Research and Monitoring Project- land, 2018.							
	https://www sment.pdf	.esrl.noaa.	gov/cso	d/assessm	ents/ozone/2018/downloads/Chapter5_2018OzoneAsses							
	3. Climate M	onitoring U	lser Gro	oup CCI Re	equirements Baseline Documents							
	http://ensen	nbles-eu.m	etoffice	.com/cmu	g/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf							
	4. WMO (Wo	rld Meteoro	ological	Organizat	ion), Update on Global Ozone: Past, Present and Future							
	in Scientific / Project-Repo https://www sment.pdf	Assessmen ort No. 58, .esrl.noaa.	t of Ozo 588 pp gov/cso	one Deplet ., Geneva, <mark>d/assessm</mark>	ion: 2018, Global Ozone Research and Monitoring , Switzerland, 2018. ents/ozone/2018/downloads/Chapter3_2018OzoneAsses							
	5. Gaudel, A and trends o evaluation, E	., et al. (20 f troposphe lem. Sci. A)18), Tr eric ozo anth., 6	opospheri ne relevar (1), 39, ht	c Ozone Assessment Report: Present-day distribution at to climate and global atmospheric chemistry model https://doi.org/10.1525/elementa.291							

3.2.5 ECV Product: Ozone Stratospheric Column

Name	Ozone Stratospheric Column								
Definition	2D field of total amount of O3 molecules per unit area in an atmospheric column extending from tropopause to stratopause.								
Unit	% (directly transferrable to Dobson units)								
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade.								
	To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.								
This data product must consider additional uncertainties introduced by errors in tropopause heights and must definitively state which tropopause definition was used.									
	Requirements								

Item needed	Unit	Metric	[1]	Value	Notes
Horizontal	km		G	20	1, 2, 3, 4
Resolution			В	100	
			Т	500	
Vertical			G	-	N/A
Resolution			В	-	
			Т	-	
Temporal	d		G	1/24	1, 2, 3, 4
Resolution			В	1	
			Т	30	
Timeliness	d		G	1/4	
			В	1	
			Т	30	
Required	%		G	1	1, 2, 3, 4
Uncertainty			В	3	Requirements for uncertainty (%) and stability
(2-sigma)			Т	5	ranges based on a 150 to 450 DU range of ozone
					stratospheric columns.
Stability	%/decade		G	1	1, 2, 3, 4
			В	2	Requirements for uncertainty (%) and stability
			Т	3	(%/decade) translate to wide Dobson Unit requirement ranges based on a 150 to 450 DU range of ozone
					stratospheric columns.
Standards and	1. Ozone Cli	mate Chan	ge Init	iative User	Requirements Document
References	http://cci.es	a.int/sites/	default,	/files/filede	epot/incoming/Ozone_cci_urd_v3.0_final.pdf
	2. WMO (Wo	rld Meteoro	ological	Organizat	ion), Stratospheric Ozone Changes and Climate in
	Report No. 5	sessment o 8. 588 pp	r Uzone . Genev	e Depletior /a. Switzer	1: 2018, Global Ozone Research and Monitoring Project-
	https://www	.esrl.noaa.		d/assessm	ents/ozone/2018/downloads/Chapter5_2018OzoneAsses
	sment.pdf		<u> </u>	-,	,
	3. Climate M	onitoring U	ser Gro	oup CCI Re	equirements Baseline Documents
	http://ensen	nbles-eu.m	etoffice	e.com/cmu	g/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf
	4. WMO (Wo	rld Meteoro	ological	Organizat	ion), Update on Global Ozone: Past, Present and Future
	in Scientific	Assessment	t of Ozo	one Deplet	ion: 2018, Global Ozone Research and Monitoring
	2018. https:	//www.esrl	.noaa.c	., Geneva, ov/csd/as	sessments/ozone/2018/downloads/Chapter3 2018Ozon
	eAssessmen	t.pdf		,,	

3.2.6 ECV Product: Ozone Total Column

Name	Ozone Total Column								
Definition	2D field of total amount of O3 molecules per unit area in an atmospheric column extending from the Earth's surface to the upper edge of the atmosphere.								
Unit	% (directly transferrable to Dobson units)								
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.								
	-			Requirem	ents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	20 100 500	1, 2, 3, 4				
Vertical Resolution			G B T	-	N/A				
Temporal Resolution	d		G B T	1/24 1 30	1, 2, 3, 4				
Timeliness	d		G B T	1/24 1 30					
Required Measurement Uncertainty (2-sigma)	%		G B T	1 2 3	1, 2, 3, 4 Requirements for uncertainty (%) and stability (%/decade) translate to wide Dobson Unit requirement ranges based on a 200 to 500 DU range of ozone total columns.				
Stability	%/decade		G B T	1 2 3	1, 2, 3, 4 Requirements for uncertainty (%) and stability (%/decade) translate to wide Dobson Unit requirement ranges based on a 200 to 500 DU range of ozone total columns.				
Standards and References	 Ozone Climate Change Initiative User Requirements Document http://cci.esa.int/sites/default/files/filedepot/incoming/Ozone_cci_urd_v3.0_final.pdf WMO (World Meteorological Organization), Stratospheric Ozone Changes and Climate in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project– Report No. 58, 588 pp., Geneva, Switzerland, 2018. https://www.esrl.noaa.gov/csd/assessments/ozone/2018/downloads/Chapter5_2018OzoneAsses sment.pdf Climate Monitoring User Group CCI Requirements Baseline Documents http://ensembles-eu.metoffice.com/cmug/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf WMO (World Meteorological Organization), Update on Global Ozone: Past, Present and Future in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58, 588 pp., Geneva, Switzerland, 2018. https://www.esrl.noaa.gov/csd/assessments/ozone/2018/downloads/Chapter3_2018Ozone 								

3.3 ECV: Precursors (Supporting the aerosol and ozone ECVs)

3.3.1 ECV Product: CO Tropospheric Column

Name	CO Tropospheric Column									
Definition	2D field of total amount of CO molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.									
Unit	ppb									
Note	Total column CO can approximate tropospheric CO. Observations exist for total column CO.									
				Requirer	nents					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10	In line with O3 & AOD & precursors					
Resolution			В	30						
			Т	100						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	d		G	1/24	In line with O3 & AOD & precursors					
Resolution			В	1						
			Т	30						
Timeliness	d		G	1						
			В	7						
			Т	30						
Required	ppb		G	1	Relaxed from GAW #242					
Uncertainty			В	5						
(2-sigma)			Т	10						
Stability	ppb/decade		G	<1	accuracy/5					
			В	1						
			Т	2						
Standards	GAW Report	242: GAW R	eport, i	242. 19th	WMO/IAEA Meeting on Carbon Dioxide, Other					
References	Landaraf et a		riateu i	s://doi.org	/10 5194/amt-9-4955-2016					
	GAW Report	255 20th M	$M \cap /T \Lambda$	EA Mootin	a on Carbon Dioxide. Other Greenhouse Gases and					
	Related Meas	surement Tec	chnique	es (GGMT-	2019) Crotwell A.; Lee, H.; Steinbacher M.; World					
	Meteorologic	al								
	Organization (WMO) - WMO, 2020 https://library.wmo.int/doc_num.php?explnum_id=10353									

3.3.2 ECV Product: CO Mole fraction

Name	CO Mole fraction	1									
Definition	3D field of amount of CO (Carbon monoxide, expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles).										
Unit	Mole fraction										
Note	Tropospheric										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10	close to the ozone requirements						
Resolution			В	30							
			Т	100							
Vertical	m		G	1	in line with ozone requirements						
Resolution			В	3							
			Т	5							
Temporal	d		G	1/24	in line with ozone requirements						
Resolution			В	1							
			Т	30							
Timeliness	d d		G	1							
			В	7							
			Т	30							
Required	ppb		G	1							
Uncertainty			В	5							
(2-sigma)			Т	10							
Stability	ppb/decade		G	<1							
			В	1							
			Т	3							
Standards	GAW Report, 242.	19th WMO/		leeting of	n Carbon Dioxide, Other Greenhouse Gases and						
References				GM1-201	1) n Carbon Diavida, Other Creanbaura Carca and						
	Related Measurem Meteorological	ient Techniqi	laea № Jes (G	GMT-201	9) Crotwell A.; Lee, H.; Steinbacher M.; World						
	Organization (WM	0) - WMO, 2	020 <mark>ht</mark>	tps://libr	rary.wmo.int/doc_num.php?explnum_id=10353						

3.3.3	ECV Product:	HCHO	Tropospheric	Column
-------	---------------------	-------------	--------------	--------

Name	HCHO Tropospheric Column											
Definition	2D field of total amount of HCHO molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.											
Unit	molecules cm ⁻²											
Note												
			F	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	km		G	10								
Resolution			В	30								
			Т	100								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	d		G	1/24	in line with O3 & aerosols.							
Resolution			В	1								
			Т	30								
Timeliness	d		G	1								
			В	7								
			Т	30								
Required Measurement	molecules cm ⁻²		G	max (20%, 8E15)	Pre-launch accuracy requirements for TROPOMI were 40-80 %; Vigoroux et al.,							
(2-sigma)			В	max (40%,16E15)	2020; https://doi.org/10.5194/amt-13-3/51- 2020							
			Т	max (100%,40E15)	Achievable with satellites, noting that accuracy is typically dominated by fit error, can be largely improved by temporal and spatial averaging							
Stability	molecules cm ⁻²		G	max (4%, 8E15)								
			В	max (8%,8E15)								
			Т	max (20%,8E15)								
Standards and References	Uncertainties in H Typical variability	lydrocarbo over cont	on emis tinenta	ssion inventories (I regions, Zhu et a	(Cao et al, 2018, Kaiser et al 2018). al., 2016.							
References	Variability of the	remote at	mosph	Variability of the remote atmosphere, Wolfe et al 2019.								

Name	SO ₂ Tropospheric Column										
Definition	2D field of total amount of SO_2 molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.										
Unit	molecules cm ⁻²										
Note											
Requirements											
Item needed	Unit Metric [1] Value Notes										
Horizontal	km		G	10	in line with O3 & AOD & precursors						
Resolution			В	30							
			Т	100							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	d		G	1/24	in line with O3 & AOD & precursors						
Resolution			В	1							
			Т	30							
Timeliness	d		G	1							
			В	7							
			Т	30							
Required	molecules cm ⁻²		G	max (30%,6E15)	Improved from Breakthrough						
Uncertainty (2-sigma)			В	max(60%, 12E15)	Driven by relaxed NO ₂ accuracy $(1.5* NO_2 accuracy in \%)$						
(= orgina)			Т	max(100%, 20E15)	Relaxed from Breakthrough, closer to achievable						
Stability	Molecules cm ⁻² /		G	max(6%,1.2E15)	Accuracy/5						
	decade		В	max(12%, 2.4E15)							
			Т	max(20%, 4E15)							
Standards and References	Accuracy is typica averaging, AMF fo	ally domin or troposp	ated b heric s	y fit error, can be la 502 is smaller than	rgely improved by temporal and spatial for HCHO and NO $_{\rm 2}$						

3.3.4 ECV Product: SO₂ Tropospheric Column

Name	SO ₂ Stratospheric Column											
Definition	2D field of total amount of SO_2 molecules per unit area in an atmospheric column extending from the tropopause to the top of the atmosphere.											
Unit	Molecules cm ⁻²											
Note												
Requirements												
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	km		G	10	in line with O3 & AOD & precursors							
Resolution			В	30								
			Т	100								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	d		G	1/24	in line with O3 & AOD & precursors							
Resolution			В	1								
			Т	30								
Timeliness	d		G	1								
			В	7								
			Т	30								
Required	molecules cm ⁻²		G	max(30%,6E15)	According to tropospheric SO ₂							
Uncertainty			В	max(60%, 12E15)	requirements							
(= oigina)			Т	max(100%, 20E15)								
Stability	molecules cm ⁻²		G	max(10%,3E15)	Accuracy/3							
	/decade		В	max(20%,4E15)								
			Т	max(30%, 7E15)								
Standards and References	Accuracy is typically averaging, AMF for t	dominate troposphe	ed by fi ric SO ₂	it error, can be larg is smaller than for	ely improved by temporal and spatial HCHO and NO_2 .							

3.3.5 ECV product: SO₂ Stratospheric Column

Name	NO ₂ Tropospheric Column								
Definition	2D field of total amount of NO_2 molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.								
Unit	molecules cm ⁻²								
Note									
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	10	in line with O3 & AOD & precursors				
			В	30					
			Т	100					
Vertical Resolution			G	-	N/A				
			В	-					
			Т	-					
Temporal Resolution	d		G	1/24	in line with O3 & AOD & precursors				
			В	1					
			Т	30					
Timeliness	d		G	1					
			В	7					
			Т	30					
Required Measurement Uncertainty (2-sigma)	molecules cm ⁻²		G	max(20%, 1E15)	Improved accuracy				
			В	max(40%, 2E15)	Requirement according to 2016 IP				
			Т	max(100%, 5E15)	Achievable accuracy.				
Stability	molecules cm ⁻² / decade		G	max(4%, 1E15)	accuracy/5				
			В	max(8%, 1E15)					
			Т	max(20%, 1E15)					
Standards and References									

3.3.6 ECV Product: NO₂ Tropospheric Column

3.3.7 ECV Product: NO₂ Mole Fraction

	NO ₂ Mole Fraction								
Name	3D field of amount of NO_2 (expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles) – in stratosphere.								
Unit	ppb								
Note									
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	20 100 500	in line with ozone profile				
Vertical Resolution	km		G	1	in line with ozone profile				
			В	3	in line with ozone profile				
			Т	5	Relaxed from breakthrough				
Temporal Resolution	d		G B	1/4					
			т	30					
Timeliness	d		G	1	in line with ozone profile				
	-		В	7					
			Т	30					
Required	%		G	20	Achievable with solar occultation				
Measurement Uncertainty			В	40	Limb scatter, stellar occultation, joint random & systematic uncertainty (1-sigma) around 20%				
(z-sigina)			Т	60	Relaxed compared to limb scatter				
Stability	%/decade		G	4	accuracy/5				
			В	8					
			Т	12					
Standards and References	https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/91JD01344 https://acp.copernicus.org/articles/8/5801/2008/acp-8-5801-2008.pdf Brochede et al, 2007; geophys comparison, https://doi.org/10.1029/2006JD007586 Tamminen et. Al 2010. doi:10.5194/acp-10-9505-2010 https://acp.copernicus.org/articles/7/3261/2007/ Fussen et al, 2019, https://doi.org/10.1016/j.jqsrt.2019.06.021								
3.4 ECV: Aerosols Properties

3.4.1 ECV Product: Aerosol Light Extinction Vertical Profile (Troposphere)

Name	Aerosol Light Extinction Vertical Profile (Troposphere)							
Definition	Spectrally dependent sum of aerosol particle light scattering and absorption coefficients per unit of geometrical path length.							
Unit	km ⁻¹							
Note	As proxy where extinction profiles are not available a very useful information is the Aerosol Layer Height layer derived from lidar or thermal instruments							
	Requirements							
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	km		G B T	50 100 500	Extinction profiles are retrieved by lidar observations so they typically refer to punctual observations. The reported values in terms of horizontal resolution are here mutated from the AOD.			
Vertical Resolution	km		G B T	0.2 1 2	Effective vertical resolution depends on the aerosol load strongly. The reported values refer to aerosol extinction @532 nm larger than 2.5 10-2 km-1			
Temporal Resolution	d	All the indicated averaging times are assumed to be representative	G B T	1 30 90				
Timeliness	У		G B	0,003 0.08				
			Т	1				
Required Measurement Uncertainty (2-sigma)	%		G B T	20 40 60	Uncertainty is dependent on the atmospheric aerosol load. These relative uncertainties refer to extinction values @532nm larger than 2.5 10-2 km ⁻¹ The reference value above (2.5 10-2 km ⁻¹), to which the uncertainty and stability and vertical resolution requirements apply, are related to the presence of aerosol. The value of 2.5 10-2 km ⁻¹ @532nm has been estimated within ACTRIS/EARLINET as indicative of the presence of an aerosol layer (ref : OC documentation available at www.earlinet.org)			
Stability	%		G	10	These percentages refer to extinction values			
ocubiiicy	/decade		В	20	@532nm larger than 2.5 10-2 km-1.			
			T	30	Stability for users' requirements for this quantity are estimated from the corresponding AOD: for AOD the required stability is one half of the required uncertainty. This criterion has been adopted also for the aerosol extinction (which is the profiling analogue of AOD).			
Standards and References	Samset, B altitude, J Pappalard Bösenberg	B. H., and G. Myhre . Geophys. Res. At o, G., Amodeo, A., J, J., D'Amico, G.,	e, Clim mos., Apitu Mattis,	ate respo 120, 291 ley, A., C , I., Mona	onse to externally mixed black carbon as a function of 3–2927, doi:10.1002/2014JD022849, 2015. Tomeron, A., Freudenthaler, V., Linné, H., Ansmann, A., a, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L.,			
	Nicolae, D network, A Welton, E. aerosols u Welton, E. P.B. Russe Aerosols D based and	Atmos. Meas. Tech Atmos. Meas. Tech J., J. R. Campbell, Ising a network of J. K.J. Voss, H.R. Ell, P.A. Durkee, P. During ACE-2: Inst I Airborne Measure	: EARI ., 7, 2 J. D. micro- Gordor Forme rumen ments	LINET: to 389–240 Spinhirne pulse lida n, H. Mar enti, M.O. t Descrip , Tellus B	wards an advanced sustainable European aerosol lidar 9, https://doi.org/10.5194/amt-7-2389-2014, 2014. e, and V. S. Scott. Global monitoring of clouds and ar systems, Proc. SPIE, 4153, 151-158, 2001. ing, A. Smirnov, B. Holben, B. Schmid, J.M. Livingston, . Andreae. Ground-based Lidar Measurements of tion, Results, and Comparisons with other Ground- 8, 52, 635-650, 2000.			
	Anderson, troposphe Shimizu, A	T. L., R. J. Charls ric aerosols, J. Atn A., T. Nishizawa. Y	on, D. 10s. So . Jin <i>.</i> S	M. Winke ci., 60, 11 SW. Kim	er, J. A. Ogren, and K. Holmén, Mesoscale variations of 19–136, 2003. J. Z. Wang, D. Batdori and N. Sugimoto. Evolution of a			
	lidar netw 2016.	ork for tropospher	ic aero	sol detec	tion in East Asia, Optical Engineering. 56 (3), 031219,			

3.4.2 ECV Product: Aerosol Light Extinction Vertical Profile (Stratosphere)

Name	Aerosol light extinction vertical profile in the stratosphere								
Definition	Spectrally dependent sum of aerosol particle light scattering and absorption coefficients per unit of geometrical path length.								
Unit	km ⁻¹								
Note									
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	200	Extinction profiles are retrieved by lidar observations				
Resolution			В	500 (latitude) x 6000 (longitude)	so they typically refer to punctual observations. But they are also inverted from limb and occultation soundings from satellite for which the spatial resolution can be used when aggregating individual measurements				
					In the stratosphere aerosols are fast spread in latitude bands. Therefore, higher resolution is required along meridians than within latitude bands				
					v3.0, 2017				
Vertical Resolution	km		G	1	Effective vertical resolution depends on the aerosol load strongly. The reported values refer to aerosol				
Resolution			В	1 (2)	extinction @532 nm larger than 2.5 10-2 km ⁻¹				
			1	2	Finer vertical resolution is required near the tropopause so that small to medium sized volcanic eruptions can be detected.				
					B: 1 at 10 km altitude; 2 at 30 km altitude				
					Source: Aerosol_cci2 User Requirements Document v3.0, 2017				
Temporal	d		G	5	All the indicated averaging times are assumed to be				
Resolution			В	5	representative				
			Т	30	detected, with 30 days only medium to large eruptions can be detected				
			-		Source: Bingen, et al., 2017 and Popp, et al., 2016				
Timeliness	У		G						
			Б	1	No near real time usage forecoopy climate studies are				
			1	1	main use				
Required Measurement	%		G	20	Uncertainty is dependent on the atmospheric aerosol load.				
Uncertainty			в	40	These relative uncertainties refer to extinction values				
(2-sigma)			'		@532nm larger than 2.5 10-2 km-1				
					Source: Aerosol_cci2 User Requirements Document v3.0, 2017				
Stability	% /decade		G B	20 40	These percentages refer to extinction values @532nm larger than 2.5 10-2 km-1.				
			Т		Source: Aerosol_cci2 User Requirements Document v3.0, 2017				
Standards	ESA Aero	sol_cci2, Use	r Requ	irements Doci	ument, v3., 12.03.2017				
and References	Christine Vanheller Jean-Pau records fo Climate N http://dx	Bingen, Char mont, Nina Ma I Vernier, Tho or the Climate Aodelling, Rer .doi.org/10.1	les E. ateshv mas P e Chan note S 016/j.i	Robert, Kersti ili, Michael Hö opp, Gerrit de ge Initiative: ensing of Env rse.2017.06.0	n Stebel, Christoph Brühl, Jennifer Schallock, Filip pfner, Thomas Trickl, John E. Barnes, Julien Jumelet, e Leeuw, and Simon Pinnock, Stratospheric aerosol data development, validation and application to Chemistry- ironment, 2017, 02				
	Section 4 Alain Che Kinne, La North, Si Stebel, D Pepijn Ve Climate I 421; doi:	.4 of: Thoma edin, Lieven C rs Klüser, Mir mon Pinnock, eborah Stein efkind, Marco Data Records 10.3390/rs80	s Popp larisse iam Ko Adam Zweer Voun from E 050421	, Gerrit de Lee , Oleg Dubovi osmale, Pekka Povey, Charle s, Gareth Tho tas and Yong uropean Sate , 2016	euw, Christine Bingen, Christoph Brühl, Virginie Capelle, k, Roy Grainger, Jan Griesfeller, Andreas Heckel, Stefan a Kolmonen, Luca Lelli, Pavel Litvinov, Linlu Mei, Peter es Robert, Michael Schulz, Larisa Sogacheva, Kerstin mas, Lieuwe Gijsbert Tilstra, Sophie Vandenbussche, Xue, Development, Production and Evaluation of Aerosol llite Observations (Aerosol_cci), Remote Sensing, 8,				

3.4.3 ECV Product: Multi-wavelength Aerosol Optical Depth

Name	Multi-wavelength Aerosol Optical Depth							
Definition	Multi-wavelength AOD is the spectral dependent aerosol extinction coefficient integrated over the geometrical path length. (see note)							
Unit	dimensionless							
Note	Aerosol Optical Depth quantifies the extinction of the radiation while propagating in an aerosol layer and reflects the aerosol loading information in the view of remote sensing measurement. AOD varies with wavelength and this variation is related to the aerosol size and type. The GAW guidelines recommend AOD be measured at 3 or more wavelengths among 368, 412, 500, 675, 778, and 862 nm with a bandwidth of 5nm. 1) under some assumptions of aerosol models and surface reflectances, spectral-dependence of AOD permits retrieval of Fine-AOD and Coarse-AOD, defined as the fraction of total aerosol optical depth attributed to the "non-dust" and "dust" aerosols, respectively, which are important parameters to distinguish aerosol type. Also sea-salt is part of the coarse mode AOD 2) The absorption aerosol optical depth (AAOD) is the fraction of AOD related to light absorption and is defined as $AAOD=(1-\omega_0) \times AOD$ where ω_0 is the column integrated aerosol single							
	scattering albed	0.						
Item needed	Unit	Motric	[1]	Value	Notes			
Horizontal	Unit	Metric		value	Notes			
Resolution	КШ		B	20				
			т	500				
Vertical			G	-	N/Δ			
Resolution			В	_				
			Т	-				
Temporal	d		G	0.01	All averages assumed to be representative			
Resolution			В	1	, ,			
			Т	30				
Timeliness	d		G	1				
			В	7				
			Т	30				
Required	% or AOD		G	4% or				
Measurement Uncertainty			P	0.02				
(2-sigma)			В	10% or				
				0.030				
			Т	20%				
				or 0.06				
Stability	%/decade or		G	2% or				
	AOD/decade			0.01				
			В	4% or				
			т	10%				
				or				
		~ ~ ~		0.04				
Standards	Levy, R. C., Mat The Collection 6	too, S., Mun MODIS aero	ichak, osol pi	L. A., Re roducts o	emer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: wer land and ocean. Atmos. Meas. Tech., 6, 2989–			
References	3034, https://do	oi.org/10.51	94/an	nt-6-2989	9-2013, 2013			
	CIMO-WMO repo	ort No 1019,	"Abri	dged fina	al report with resolutions and recommendations", 2006			
	Giles, D. M., Sin Holben, B. N., Le Advancements in real-time quality optical depth (Ar 209, https://doi	yuk, A., Sor ewis, J. R., G n the Aeroso control algo OD) measur .org/10.519	okin, Campl ol Rob orithm emen 4/amt	M. G., Sc pell, J. R. otic Netwo with imp ts, Atmos -12-169-	chafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., , Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: york (AERONET) Version 3 database – automated near- proved cloud screening for Sun photometer aerosol s. Meas. Tech., 12, 169– -2019, 2019			
	Cuevas, E., Rom Barreto, A., Guir optical depth con (2005–2015) 1 r 4337, https://do	nero-Campos rado-Fuentes mparison be min synchro pi.org/10.51	s, P. M s, C., tweer nous r 94/an	1., Koure Ramos, F GAW-PF neasurer nt-12-430	meti, N., Kazadzis, S., Räisänen, P., García, R. D., R., Toledano, C., Almansa, F., and Gröbner, J.: Aerosol R and AERONET-Cimel radiometers from long-term nents, Atmos. Meas. Tech., 12, 4309– 09-2019, 2019			

Kazadzis, S., Kouremeti, N., Nyeki, S., Gröbner, J., and Wehrli, C.: The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements, Geosci. Instrum. Method. Data Syst., 7, 39-53, https://doi.org/10.5194/gi-7-39-2018, 2018a.

Kazadzis, S., Kouremeti, N., Diémoz, H., Gröbner, J., Forgan, B. W., Campanelli, M., Estellés, V., Lantz, K., Michalsky, J., Carlund, T., Cuevas, E., Toledano, C., Becker, R., Nyeki, S., Kosmopoulos, P. G., Tatsiankou, V., Vuilleumier, L., Denn, F. M., Ohkawara, N., Ijima, O., Goloub, P., Raptis, P. I., Milner, M., Behrens, K., Barreto, A., Martucci, G., Hall, E., Wendell, J., Fabbri, B. E., and Wehrli, C.: Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements, Atmos. Chem. Phys., 18, 3185-3201, https://doi.org/10.5194/acp-18-3185-2018, 2018b.

Schutgens, N., Tsyro, S., Gryspeerdt, E., Goto, D., Weigum, N., Schulz, M., and Stier, P.: On the spatio-temporal representativeness of observations, Atmos. Chem. Phys., 17, 9761–9780, https://doi.org/10.5194/acp-17-9761-2017, 2017.

3.4.4 ECV product: Chemical Composition of Aerosol Particles

Timeliness

Required

Measurement

Uncertainty

d

%

Name	Chemica	Chemical Composition of Aerosol Particles						
Definition	Aerosol particles are chemically composed of inorganic salts (ammonium sulfates, ammonium nitrate, and sea salt), organic compounds, Elemental Carbon (EC), dust, and volcanic ash. These species are often internally mixed within a particle with mixtures depending on sources (primary particles and gas phase precursors), atmospheric processes (gas to particle conversion, cloud processing, and condensation), and atmospheric conditions (T, P, and RH). The chemical composition of aerosol particles is often expressed in µg m ⁻³ .							
Unit	µg m⁻³	μg m ⁻³						
Note	Climate relevant properties of aerosol particles include hygroscopicity and refractive index. To a first approximation knowledge of the speciated amounts of key components (total inorganics – including sea-salt-, organics, Equivalent Black Carbon, mineral dust, and volcanic ash) is sufficient. Dust can be approximated from the difference between total Mass and sum of Inorganic, EC and OC. As a proxy for the chemical composition, combination of different properties can be used, e.g. size (from Extinction Angström exponent or Fine Mode fraction), absorption (from SSA or AAOD), absorption colour (Absorption Angström exponent). However, any such estimated characterization needs to be associated with a clear definition how a certain aerosol type was characterized and this expendent file.							
				Requireme	ents			
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	km		G B T	50 100 500	Horizontal definition based on Anderson et al., 2003			
Vertical Resolution	km		G B T	1 5	Information on both single point AND integrated column are valuable as a threshold. More precise information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal).			
Temporal Resolution	d	All averages assumed to be representative	G B T	1 30 90				

(2-sigma)			1	60				
Stability	%		G	2				
	/decade		В	2				
			Т	4				
Standards and	Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmén, Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, 2003.							
References	Aas, W., Mortier, A., Bowersox, V. et al. Global and regional trends of atmospheric sulfur. Sci Rep 9, 953 (2019) doi:10.1038/s41598-018-37304-0.							
	Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M. C., Decesari, S., Fu Gehrig, R., Hüglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Que Rodriguez, S., Schneider, J., Spindler, G., Ten Brink, H., Tørseth, K., and Wiedensohler, A.							

G

В

Т

G

В

0.1

365

20

40

~ ~

1

European aerosol phenomenology – 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2579–2595, 2004.

Number of Cloud Condensation Nuclei Name Definition Number of aerosol particles which can activate to a cloud droplet at a given supersaturations of water. CCN is often indicated as a percent of the total CN for specific supersaturation typical of atmospheric cloud formation. Unit Dimensionless Note CCN depends on the supersaturation. Whenever provision of CCN for a range of supersaturation is not available, a typical value of 0.5% can be used as typical supersaturation under atmospheric conditions. The CCN number concentration can be approximated by the fraction of particles larger than a given diameter from the particle number size distribution, generally the number of particles larger than 100 nm, which provide a good approximation of particles activated at « typical » supersaturation.

where no other data are available, line mode AOD can be used as a qualitative proxy for CCN									
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	50 100 500	Horizontal definition based on Anderson et al., 2003, Sun et al., 2019 and Laj et al., submitted				
Vertical Resolution	km		G B T	1 5	Information on both single point AND integrated column are valuable as a threshold. More precise information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal).				
Temporal Resolution	d	All averages assumed to be representative	G B T	0.5 1 30					
Timeliness	d		G B T	0.04 1 365					
Required Measurement Uncertainty (2-sigma)	%		G B T	20 40 60					
Stability	% /decade		G B T	- -	Stability difficult to evaluate as no trend in CCN are currently available				
Standards and References	Anderson troposphe Fanourga Hamilton, R, Matsui Watson-F M, Kalivit AP, Wu, M nuclei nu DOI:10.5 Schmale, Kalivitis, P., Äijälä, Herrmann O'Dowd, Pöhlker, I Yum, S.S term clou chemical 10.1038/	, T. L., R. J. Char eric aerosols, J. A kis, GS, Kanakido , DS, Johnson, JS , H, Neubauer, D arris, D, Westerv is, N, Liu, XH, Ma MX, Yu, FQ, "Eval mber, with implic 194/acp-19-8591 J., Henning, S., N., Stavroulas, I. M., Bukowiecki, n, E., Holzinger, F C.D., Paramonov M., Pöschl, U., Ar , Stratmann, F., d condensation n composition at re sdata.2017.3.	Ison, I tmos. bu, M, , Kary , Pierc elt, DI howal uations 2-2019 Henzin , Jeffe N., De R., Kos , M., P taxo, F Balter uclei r egional	 M. Winker Sci., 60, 11 Nenes, A, B dis, VA, Kirk e, JR, Schm. M, Yang, Y, Y d, NM, Myric of global sir for cloud dr 0, 2019. ng, J.S., Kesl rson, A., Par ecesari, S., E s, G., Kulmal etäjä, T., Pic P., Brito, J., nsperger, U. number conc lly represent 	r, J. A. Ogren, and K. Holmén, Mesoscale variations of 9–136, 2003. auer, SE, Bergman, T, Carslaw, KS, Grini, A, ievag, A, Kodros, JK, Lohmann, U, Luo, G, Makkonen, ale, J, Stier, P, Tsigaridis, K, van Noije, T, Wang, HL, Yoshioka, M, Daskalakis, N, Decesari, S, Gysel-Beer, okefalitakis, S. Schrodner, R, Sfakianaki, M, Tsimpidi, nulations of aerosol particle and cloud condensation oplet formation," Atmos. Chem. Phys., 19, 8591-8617 kinen, H., Sellegri, K., Ovadnevaite, J., Bougiatioti, A., rk, M., Schlag, P., Kristensson, A., Iwamoto, Y., Aalto, chn, M., Frank, G., Fröhlich, R., Frumau, A., a, M., Mihalopoulos, N., Motos, G., Nenes, A., card, D., Poulain, L., Prévôt, A.S.H., Swietlicki, E., Carbone, S., Wiedensohler, A., Ogren, J., Matsuki, A., and Gysel, M. (2017) What do we learn from long- tentration, particle number size distribution and tative observatories? Sci. Data 4:170003, doi:				

3.4.5 ECV Product: Number of Cloud Condensation Nuclei

3.4.6	ECV Product: Aeroso	ol Number Size Distribution	
-------	---------------------	-----------------------------	--

Name	Aerosol	Number Size Di	stribu	tion					
Definition	The parties specified	cle number size d size ranges.	istribu	tion (PNSD)	describes the number of particles in multiple				
Unit	dimensionless								
Note	The PNSD can provide information about primary particle sources and secondary formation processes, as well as aerosol transport. PNSD can be directly measured in-situ or retrieved under some assumptions from AOD-related measurements or light extinction vertical profile measurements. For climate application, PNSD at ambient relative humidity is relevant.								
	As a proxy for a directly measured aerosol number size distribution, the extinction (scattering) Angstrom exponent, defined as the dependence of $\ln(AOD)$ (or $\ln(\sigma sp)$) on $\ln(\lambda)$ can be used as a qualitative indicator of aerosol particle size distribution. Values near 1 indicate a particle size distribution dominated by coarse mode aerosol such as typically associated with mineral dust and sea salt. Values of near 2 indicate particle size distributions dominated by the fine aerosol mode (usually associated with anthropogenic sources and biomass burning).								
	The total ranges. If	number of partic t can be used to o	les (i.e derive	e., condensat PNSD under	tion nuclei (CN)) is the integral of PNSD over all size some assumptions.				
	particle c	omposition and h	ydrosc	copic growth	model under some assumptions				
	Number of particles below 20 nm (in diameter) are highly variable due to the process of New Particle Formation and have little direct radiative impact. Regardless, the requirement for aerosol number size distribution ideally is provided for the full size spectrum (15 nm- 15 μ m) (defined as goal). Very important climate application can be made with knowledge of PNSD into 2 size ranges (fine and coarse), defined as Threshold). Knowledge of PNSD into 4 size ranges (ultrafine, Aitken, Accumulation and coarse) is defined as breakthrough.								
				Requireme	nts				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	50	Horizontal definition based on Anderson et al.,				
Resolution	Resolution		в	100					
Vortical	km		I C	500	Information on both single point AND intograted				
Resolution	КШ		B	5	column are valuable as a threshold. More precise				
			Т	5	information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal).				
Temporal	d	All averages	G	0.04					
Resolution		be	В	1					
		representative	Т	30					
Timeliness	d		G	0,25					
			B	30					
Demoined				365	Cite distribution is a 2 Describely these expectations				
Required Measurement Uncertainty (2-sigma)			G	40% In number and 20% on size	can either refer size or number. Uncertainty requirements are therefore provided for both dimensions. The uncertainty on size refers to the				
			В	60% in number in 40% in size	diameter of the mode of the distribution				
		Τ	40% in number for fine- mode (0.05- 0.5um) and 100% in number for coarse- mode (0.5- 15um)						
Stability			G	2					

	%		В	4			
	/decade		Т	10			
Standards and References	Laj et al., A global analysis of climate-relevant aerosol properties retrieved from the network of GAW near-surface observatories, submitted to AMT Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmén, Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119– 136, 2003. Sun, J., W. Birmili, M. Hermann, T. Tuch, K. Weinhold, G. Spindler, A. Schladitz, S. Bastian, G. Löschau, J. Cyrys, J. Gu, H. Flentje, B. Briel, C. Asbach, H. Kaminski, L. Ries, R. Sohmer, H. Gerwig, K. Wirtz, F. Meinhardt, A. Schwerin, O. Bath, N. Ma, A. Wiedensohler, Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations, Atmospheric Environment, Volume 202, 2019, Pages 256-268, ISSN 1352-						
	2310, htt Wiedenso Tuch, T., P., Laj, P Fierz-Sch Faloon, K Horn, H M., Henzi harmoniz observati 685, <u>http</u>	ps://doi.org/10.1 phler, A., Birmili, M Pfeifer, S., Fiebig ., Aalto, P., Ogrer midhauser, R., G ., Beddows, D., H G., Keck, L., Jian ing, B., de Leeuw, ation of technical ons of atmospher s://doi.org/10.51	016/j W., No , M., I , J. A ysel, N larriso g, J., S , G., L stand ic par 94/an	atmosenv.2 owak, A., Soi -järaa, A. M. ., Swietlicki, 1., Weingart n, R., Monał Scheckman, öschau, G., lards and da ticle number nt-5-657-20	018.12.029. nntag, A., Weinhold, K., Merkel, M., Wehner, B., , Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., ner, E., Riccobono, F., Santos, S., Grüning, C., nan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, and Bastian, S.: Mobility particle size spectrometers: ta structure to facilitate high quality long-term size distributions, Atmos. Meas. Tech., 5, 657– 12, 2012.		

3.4.7 ECV Product: Aerosol Single Scattering Albedo

Name	Aerosol Single Scattering Albedo
Definition	Spectrally dependent ratio of particle light scattering coefficient to the particle light extinction coefficient.
Unit	dimensionless
Note	The Aerosol Single Scattering Albedo ($\omega 0$ or SSA) is defined as $\sigma sp/\sigma ep$, or $\sigma sp/(\sigma sp + \sigma ap)$ where (σep), is the volumetric cross-section for light extinction and is commonly called the particle light extinction coefficient typically reported in units of Mm-1 (10-6 m-1). It is the sum of the particle light scattering (σsp) and particle light absorption coefficients (σap), $\sigma ep = \sigma sp + \sigma ap$. All coefficients are spectrally dependent.
	Purely scattering aerosol particles (e.g., ammonium sulfate) have values of 1, while very strong absorbing aerosol particles (e.g., black carbon) may have values of around 0.3 at 550nm.
	The absorption aerosol optical depth(AAOD) is fraction of AOD related to light absorption and is defined as AAOD= $(1-\omega o) \times AOD$ where ωo is the column integrated single scattering albedo. Under some circumstances, AAOD at 550 nm is not as highly uncertain as SSA (in particular for low AOD) and can be used as ECV proxy for absorption. By part of the community AAOD is regarded better suited than SSA which is highly uncertain at low AOD.

				Requireme	
Item needed	Unit	Metric	[1]	Value	Notes
Horizontal	km		G	50	Anderson et al., 2003
Resolution			В	200	Laj et al., submitted)
			Т	500	
Vertical	km		G	1	Information on both single point AND integrated
Resolution			В	5	column are valuable as a threshold. More precise
			Т		5km resolution (breakthrough) or 1 km (Goal). SSA
					is not directly measurable as integrated column or
					assumptions.
Temporal	d		G	0.01	All averages assumed to be representative
Resolution			В	1	
			Т	30	
Timeliness	d		G	1	
			В	7	
			Т	30	
Required	dimensionless		G	0.1	
Measurement			В	0.2	
(2-sigma)			Т	0.4	
Stability	% /decade		G	0.1	Stability difficult to assess due to lack of clear
			В	0.4	trends observed
			Т	1	
Standards	Laj et al., A glo	bal analys	is of cl	imate-relevar	it aerosol properties retrieved from the network of
References	GAW field-sund	tol Multi	docada	s, submitted t	.0 AMI sis of apropal radiative properties at a global scale
	submitted to A	CP	Jecaua	a trenu analy:	sis of aerosol radiative properties at a global scale,
	Sherman, J. P.,	Sheridan,	P. J.,	Ogren, J. A.,	Andrews, E., Hageman, D., Schmeisser, L.,
	Jefferson, A., a	nd Sharma	a, S.: /	A multi-year s	study of lower tropospheric aerosol variability and
	12517, https://	/doi.org/10).5194	/acp-15-1248	37-2015, 2015.
	Schutgens, N.,	Tsyro, S.,	Grysp	eerdt, E., Got	o, D., Weigum, N., Schulz, M., and Stier, P.: On the
	spatio-tempora	l represent	tativer	ness of observ	vations, Atmos. Chem. Phys., 17, 9761–
	5700, nccp3.//0	ionorg/10.	5154/0	аср 17 5701	

Ocean ECVs

4. **PHYSICS**

4.1 ECV: Sea-Surface Temperature

4.1.1 ECV Product: Sea-Surface Temperature

Name	Sea surfa	ce temperat	ure							
Definition	Radiative skin sea surface temperature, or Bulk sea surface temperature at stated depth									
Unit	Kelvin (K)									
Note	The "bulk" temperature refers to the depth of typically 2 m, the "skin" temperature refers to within the upper 1 mm.									
		Requirements								
Item needed	Unit Metric [1] Value Notes									
Horizontal	km	length	G	5						
Resolution			В							
			Т	100						
Vertical			G	-	N/A					
Resolution			В	-						
			т	-						
Temporal Resolution	d	time	G	1/24	In situ measurements, daily in the case of satellite measurements					
			В							
			Т	7						
Timeliness	Timeliness h time	G	3							
		В								
			Т	24						
Required	К		G	0.05	Over 100 km scale					
Measurement			В							
(2-sigma)			Т	0.3	Over 100 km scale					
Stability	K/decade		G	0.01	Over 100 km scale					
			В							
			Т	0.1	Over 100 km scale					
Standards and References	Johnson et al (2015): Informing Deep Argo Array Design Using Argo and Full-Depth Hydrographic Section Data; https://journals.ametsoc.org/doi/full/10.1175/JTECH-D-15- 0139.1; 5 x 5 degree array proposed with 15-day repeat cycle. Estimated reduction of sub-2000 m OHC error in decadal trends from +/- 17 TW to +/- 3TW. Desbruyeres et al (2017): Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat Hydrography; https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-16-0396.1: "Estimate of global ocean									
	heat uptak of the obs	the of 0.71 \pm 0 erved change.	.09 V	V m-2 d	uring 2006-2014 with < 2000m layer accounting for 90%					
	https://clin signed.pdf	mate.esa.int/i	nedia	nents Do a/docum	ents/SST_CCI-URD-UKMO-201, ESA. 2					
	Merchant, temperatu https://do	C.J., Embury re since 1981 i.org/10.1038	, 0., for c /s41	Bulgin, C limate a 597-019-	C.E. et al. Satellite-based time-series of sea- surface pplications. Sci Data 6, 223 (2019). -0236-x					

4.2 ECV: Subsurface Temperature

4.2.1 ECV Product: Interior Temperature

Name										
Definition	Seawater temperature measured with depth.									
Unit	Kelvin (K)									
Note	This va	ariable is refe	rred t	to as "Ocean ter	nperature" in WMO RRR, and a difference between Upper					
	(<200	0 m) and Dee	ep (>	2000 m) ocean i	is established.					
				Requir	rements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10	Upper ocean					
Resolution				100	Deep ocean					
				1	Coastal					
			В	100	Upper ocean					
				250	Deep ocean					
			Т	300	Upper ocean					
				500	Deep ocean					
				10	Coastal					
Vertical	m		G	1	Upper ocean					
Resolution			В	2	Upper ocean					
			Т	10	Upper ocean					
Temporal	d		G	1	Upper ocean					
Resolution				1	Deep ocean					
				1/24	Coastal					
			В	10	Upper ocean					
				. –						
			_	15	Deep ocean					
			Т	30	Upper ocean					
				30	Deep ocean					
			0	30	Coastal					
Timeliness	a		G	1	for real time					
			P	90	for real time					
			D	190	in delayed mede					
			т	30	for roal time					
			1	365	in delayed mode					
Required	ĸ		G	0.001	Unper ocean					
Measurement	ĸ		U	0.001	Deep ocean					
Uncertainty				0.001						
(2-sigma)			В							
			Т	0.1	Upper ocean					
				0.01	Deep ocean					
				0.1	Coastal					
Stability	K									
Standards	Johnso	n et al (2015 Data: https): In: ://iou	forming Deep Ar	go Array Design Using Argo and Full-Depth Hydrographic					
References	degree	array propo	sed w	ith 15-day repe	at cycle. Estimated reduction of sub-2000 m OHC error in					
	decada	al trends from	n +/-	17 TW to +/- 3	TW.					
	Palmer	et al (2010)	: Fut	ure Observations	s for Monitoring Global Ocean Heat					
	the pa	per includes (w.oce	Observation Re	acceedings/cwp/Paimer-OceanODS09.cwp.68.pdf; Table 1 In accuirements in WMO/CEOS Database for upper ocean					
	tempe	rature and sa	linity							
	Dest	oruyeres et a	(201	7): Global and I	Full-Depth Ocean Temperature Trends during the Early					
	Twer	nty-First Cent	ury f	rom Argo and Re	epeat					

Hydrography; https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-16-0396.1; "Estimate of global ocean heat uptake of 0.71 ± 0.09 W m-2 during 2006-2014 with < 2000m layer accounting for 90% of the observed change.

4.3 ECV: Sea-Surface Salinity

4.3.1 ECV Product: Sea-surface Salinity

Name	Sea-surface salinity								
Definition	Salinity of seawater, at or near the surface.								
Unit	psu, pss, g/Kg, or no unit								
Note	For remote sensing, the measurement corresponds typically to 1 cm depth. For in situ, 1-2 m depth.								
				Require	nents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	10 50-100					
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	d		G	1-3					
Resolution			В						
			Т	7					
Timeliness	d		G	7					
			В						
			Т	30					
Required Measurement Uncertainty (2-sigma)	i 1 ment nty a)		G	0.1	Synthesis of coordinated input from ESA based on community workshop and numerous published references. 0.1 psu for 50-km spatial average and monthly mean; mean in low-variability regions (where in-situ validation measurements are not subject to significant sampling errors).				
			В						
			Т	0.2	Synthesis of coordinated input from ESA based on community workshop and numerous published references. 0.2 psu for 100-km spatial average and monthly mean in low variability regions.				
Stability	1/decade		G	0.01	0.01 psu/decade for 1000-km average in low-variability regions.				
			В						
			Т	0.1	Durach, Wijffel and Matear (2012) (showing trends of 0.4 psu over 5 decades on 1000-km scales)				
					0.1 psu/decade for 1000-km average in low-variability regions.				
Standards and References	Durack, Pa Global Wa 10.1126/s	aul J., Susan ter Cycle Inte cience.12122	E. Wij ensific 22	iffels and Richa ation During 1	ard J. Matear (2012): Ocean Salinities Reveal Strong 950 to 2000, Science, 336 (6080), pp 455-458. DOI:				
	Sea Surfac Available a accepted.r	ce Salinity Cli at: https://cli odf	mate mate.	Change Initiat esa.int/sites/c	tive Phase 1 - User Requirement Document (2019). lefault/files/SSS_cci-D1.1-URD-v1r4_signed-				

4.4 ECV: Subsurface Salinity

4.4.1 ECV Product: Interior Salinity

Name	Interior s	Interior salinity									
Definition	Salinity of seawater measured with depth.										
Unit	psu, pss, g Kg ⁻¹ , or no unit										
Note	This variable is referred to as "Ocean salinity" in WMO RRR OSCAR database, and a difference between Upper (<2000 m) and Deep (>2000 m) ocean is established.										
	Requirements										
Item needed	Unit Metric [1] Value Notes										
Horizontal	km		G	10							
Resolution			В								
			Т	100							
Vertical	m		G	1	Upper ocean						
Resolution											
				1	Deep ocean						
			В								
			Т	10	Upper ocean						
				100	Deep ocean						
Temporal	d		G	1							
Resolution			В								
			Т	30							
Timeliness	d		G	1							
			В								
			Т	30							
Required	1		G	0.01	Upper ocean						
Measurement											
(2-sigma)				0.005	Deep ocean						
			В								
			Т	0.05	Upper ocean						
				0.02	Deep ocean						
Stability	1/decade		G								
			В								
			Т								
Standards											
References											

4.5 ECV: Surface Currents

4.5.1 ECV Product: Ekman Currents

Name	Ekman currents										
Definition	Ocean vector motion occurring over the depth of the Ekman layer as a result of the combined action of surface winds and Coriolis force.										
Unit	m s⁻¹	m s ⁻¹									
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
Resolution			В	20							
			Т	25							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	h h		G	1							
Resolution			В								
			Т	6							
Timeliness	h		G	1							
			В								
			Т	3							
Required	m s⁻¹		G	0.02							
Measurement			В								
(2-sigma)			Т	0.1							
Stability			G								
			В								
			Т								
Standards and References											

Name	Surface Geostrophic Current										
Definition	Ocean vector motion measured at or near the surface (at stated depth).										
Unit	m s ⁻¹										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
Resolution			В	20							
			Т	100							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	d		G	1/4							
Resolution	Resolution		В	1							
			Т	7							
Timeliness	d		G								
			В								
			Т	1							
Required	m s⁻¹		G	0.02							
Measurement			В								
(2-sigma)			Т	0.1							
Stability			G								
			В								
			Т								
Standards and References	Villas Bôa Requirem 10.3389/1	s et al. (2019 ents and Cha fmars.2019.0	9) Int alleng)0425	egrated es for th	Observations of Global Surface Winds, Currents, and Waves: e Next Decade. Front. Mar.Sci. 6:425. doi:						
	http://globcurrent.ifremer.fr/products-data										

4.5.2 ECV Product: Surface Geostrophic Current

4.6 ECV: Subsurface Currents

4.6.1 ECV Product: Vertical Mixing

Name	Vertical mixing										
Definition	Ocean ve	ctor motion r	neasu	ired at or near th	e surface (3D, at stated depth).						
Unit	m s ⁻¹										
Note	A difference between Upper (<2000 m) and Deep (>2000 m) ocean is established.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
Resolution			В								
			Т	100							
Vertical	m		G	1	Upper ocean						
Resolution											
				10	Deep ocean						
			В								
			Т	10	Upper ocean						
				100	Deep ocean						
Temporal	d		G	1							
Resolution			В	7							
			Т	30							
Timeliness	d		G								
			В								
			Т	30							
Required			G	0.02							
Uncertainty			В								
(2-sigma)			Т	0.1							
Stability			G								
			В								
			Т								
Standards and References											

4.7 ECV: Sea Level

4.7.1 ECV Product: Regional Mean Sea Level

Name	Regional mean sea level												
Definition	The Heigh	t of the Ocea	an Su	rface rel	ative to a reference geoid or an agreed regional datum.								
Unit	m												
Note	Estimates of the regional mean sea level are obtained by averaging individual sea surface heights over a region during a given period.												
		Requirements											
Item needed	Unit	Metric	[1]	Value	Notes								
Horizontal	km		G	10									
Resolution			В										
			Т	100									
Vertical			G	-	N/A								
Resolution			В	-									
			Т	-									
Temporal	d		G	1									
Resolution		В											
			Т	7									
Timeliness	month		G	1									
			В										
			Т	12									
Required	mm		G										
Measurement			В										
(2-sigma)			Т	10	Over a grid mesh of 50-100 km								
Stability	mm yr ⁻¹		G	<0.1	Regional mean, 90% CI (confidence level)								
			В										
			Т	0.3	Over a grid mesh of 50-100 km								
Standards and References	Ponte, R.M De Wal, R observing level. From	M., Carson, N S.W., Wood and modelir ntiers in Mari	1., Ciu Iworth ng sys ine So	rano, M., n, P.L., A stems for cience, p	Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van blain, M. and Ardhuin, F., 2019. Towards comprehensive monitoring and predicting regional to coastal sea .437.								
	Requirem	e, J., Cazena ents for a co mars.2019.0	astal 0348	zone obs	serving system. Front. Mar. Sci. 6:348. doi:								

Name	Global Mean Sea level									
Definition	The height of the ocean surface relative to a reference geoid.									
Unit	m									
Note	Estimates of the global mean sea level are obtained by averaging individual sea surface heights over the global ocean during a given period.									
		Requirements								
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	10 100						
Vertical Resolution			G B T	- -	N/A					
Temporal Resolution	d		G B T	1 30						
Timeliness	d		G B T	30 365						
Required Measurement Uncertainty (2- sigma)	mm		G B T	2-4	Values for the global mean. The uncertainty over a global mesh is = 10 mm					
Stability	mm yr ⁻¹		G	<0.03	Target to be considered for the detection of permafrost melting. From the WCRP grand challenge on sea level and coastal impacts the required stability in GMSL is <0.03 mm/year (over a decade, 90%Cl) to detect permafrost thawing.					
			В	<0.1	Target to be considered for the estimation of deep ocean warming and Earth energy imbalance is 0.1 mm/year (over a decade, 90% Cl).					
			Т	<0.3	Adapted for sea level impact detection (detection of a change in the rate of rise of the global mean sea level). From the WCRP grand challenge on sea level and coastal impacts the required stability in GMSL <0.3 mm/year (global mean, 90% Cl) for the detection attribution of sea level rise.					
Standards and References	The unce relies on environm Meyssian	rtainty budg the precise ental altimo ac, B., Bove	get of orbit eter c er, T.	the glob determir orrection , Zhao, Z	al mean sea level derived from satellite altimetry strongly nation of the platform, the instrumental, geophysical and s used to derive the sea level anomalies. ., Hakuba, M.Z., Landerer, F.W., Stammer, D., Köhl, A., Kato.					
	S., L'ecu estimate Cazenave P., Hogg, requirem	yer, T., Abla the Earth e e, A., Hamli A.E., Lege ents for lon	ain, M nergy ngton ais, J. g-teri	. and Abi v imbalan I, B., Hor F., Merrin m monito	wath, M., Barletta, V.R., Benveniste, J., Chambers, D., Döll, field, M. and Meyssignac, B., 2019. Observational pring of the global mean sea level and its components over the					
	altimetry	era. Fronti	ers in	Marine S	science, p.582.					

4.7.2 ECV Product: Global Mean Sea Level

4.8 ECV: Sea State

4.8.1 ECV Product: Wave Height

Name	Wave Height										
Definition	The distance between the trough of the wave and the adjacent crest of the wave. The significant wave height is the mean wave height (trough to crest) of the highest third of the waves in a wave spectrum.										
Unit	cm	cm									
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	1	Needed to resolve sea state variability in the coastal zone						
			В	25	Needed to resolve mesoscale variability						
			Т	100	Needed to resolve synoptic scales associated with atmospheric systems						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	mporal h solution		G	1	Needed to resolve sea state variability in the coastal zone (tidal modulation of the sea state)						
				3	Needed to resolve sea state variability at the scale of storm events						
			Т	24	Needed to compute robust monthly statistics						
Timeliness	d		G	7	To support assessment of extreme storm/cyclonic event						
			В	30	To support assessment of seasonal extreme event						
			Т	365	For assessment and reanalysis						
Required Measurement	%	Normalized root-	G	5	Uncertainty goal, as proposed by Ardhuin et al., 2019						
Uncertainty		mean-	В								
(2-sigma)		squared error	т								
Stability	cm/decade		G	1	Needed to account for wave impact (wave setup) on coastal sea level						
			В								
			Т	10	Needed to detect the largest trends. Existing long-term observations show maximum						
Standards and References	Ardhuin, F.	et al. 2019. C	bserv	ving Sea Sta	ates. Front. Mar. Sci. 6.						

4.9 ECV: Ocean Surface Stress

4.9.1 ECV Product: Ocean Surface Stress

Name	Ocean Surface Stress											
Definition	The two-dimensional vector drag at the bottom of the atmosphere and the dynamical forcing at the top of the ocean.											
Unit	N m ⁻²											
Note												
	Requirements											
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	km		G	10								
Resolution			В									
			Т	100								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	h		G	1								
Resolution			В									
			Т	24								
Timeliness	d		G	7								
			В									
			Т	30								
Required Measurement	N m⁻²		G	0.004 or 2%	International Ocean Vector Wind Science Team; Cronin et a. (2019), https://doi.org/10.3389/fmars.2019.00430							
Uncertainty (2-sigma)			В									
(2 orgina)			Т	0.02 or 8%	International Ocean Vector Wind Science Team; Cronin et a. (2019), https://doi.org/10.3389/fmars.2019.00430							
Stability	N m ⁻²		G	0.0006	International Ocean Vector Wind Science Team; Cronin et a. (2019), https://doi.org/10.3389/fmars.2019.00430							
			В									
			Т	0.0001	International Ocean Vector Wind Science Team; Cronin et a. (2019), https://doi.org/10.3389/fmars.2019.00430							
Standards and References												

4.10 ECV: Ocean Surface Heat Flux

4.10.1 ECV Product: Radiative Heat Flux

Name	Radiative He	at Flux									
Definition	The net difference between radiation leaving the sea surface (reflected and emitted) and downward radiation impinging on the sea surface; commonly divided into an infrared or longwave and a visible or shortwave component $(0,, + 0,)$										
	$O_{UW,net} = LW \uparrow - LW \downarrow = \epsilon \sigma_{c_P} T_c^4 + (1 - \epsilon) LW \downarrow - LW \downarrow = \epsilon (\sigma_{c_P} T_c^4 - LW \downarrow)$										
	and $O_{W,net} = O_{W} \uparrow - O_{W} \downarrow = O_{W} \downarrow (\alpha - 1)$										
	where ϵ is the	IR surface	e emis	ssivity ($\epsilon = 1$ for black	ack-body emission), σ_{SB} is Stefan-Boltzmann						
	constant, and T_s is the sea surface (skin) temperature that is emitting the IR-radiation, in degrees Kelvin. Upward shortwave flux is reflected sunlight, often determined by parameterization of surface albedo (α).										
Unit	W m ⁻²										
Note	Surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. Sign conventions vary; heat fluxes are sometimes reported with positive values for heat into the ocean. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Downward shortwave at the surface is predominantly visible light. While sensible, latent, and longwave heat fluxes occur at the sea surface, the shortwave radiation penetrates seawater, with red light absorbed close to the surface and blue light absorbed at deeper depths. These turbulent and radiative surface fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.										
				Requirement	S						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
			В	25							
			Т	100							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	h		G	1							
Resolution			В	3							
			Т	24							
Timeliness			G	7							
			В	30							
			Т	365							
Required	W m ⁻²		G	10	•						
Measurement Uncertaintv			В	15							
(2-sigma)			Т	20							
Stability	W m ⁻² /		G	1							
	decade		В	2							
			Т	3							
Standards and	Meghan F. Cro Marine Scienc	onin et al. e, 6, articl	(2019 e 430). Air-Sea Fluxes , p1-30.	with a Focus on Heat and Momentum, Frontiers in						

References https://www.frontiersin.org/articles/10.3389/fmars.2019.00430/full

Meyssignac, Benoit, et al. Measuring global ocean heat content to estimate the Earth energy imbalance" Frontiers in Marine Science 6 (2019): 432.

4.10.2 ECV Product: Sensible Heat Flux

Name	Sensible Heat Flux										
Definition	The heat exchanged between the atmosphere and ocean when a warmer ocean warms the air above or when a cooler ocean cools the air above.										
Unit	W m ⁻²										
Note	The net surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. Sign conventions vary; heat fluxes are sometimes reported with positive values for heat into the ocean. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Sensible heat flux is the rate at which heat is transferred from the ocean to the atmosphere by conduction and convection. Commonly, the ocean is warmer than the atmosphere, leading to a sensible heat flux that warms the atmosphere. A surface sensible heat flux which warms the atmosphere will tend to cause unstable (convective) conditions and enhanced mixing, while an atmosphere cooled by the ocean tends to be stratified, which inhibits mixing. In the tropics, latent heat flux is typically an order of magnitude greater than sensible heat flux, but in polar regions they are similar in magnitude. These fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.										
				Requirement	:S						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G B T	10 25 100							
Vertical Resolution			G B T	-	N/A						
Temporal Resolution	h		G B T	1 3 24							
Timeliness			G B T	7 30 365							
Required Measurement Uncertainty (2-sigma)	W m ⁻²		G B T	10 15 20							
Stability	W m ⁻² / decade		G B T	1 2 3							
Standards and References	Meghan F. Cronin et al (2019). Air-Sea Fluxes with a Focus on Heat and Momentum, Frontiers in Marine Science, 6, article 430, p1-30. https://www.frontiersin.org/articles/10.3389/fmars.2019.00430 Meyssignac, Benoit, et al. "Measuring global ocean heat content to estimate the Earth energy										

4.10.3 ECV Product: Latent Heat Flux

Name	Latent Heat Flux								
Definition	The latent heat exchanged between the ocean and atmosphere associated with the phase change from liquid to gas during evaporation of seawater or from gas to liquid during condensation. During the more common process of surface evaporation, heat is extracted from the ocean, cooling the surface ocean. The moistened parcel of air can be carried aloft and the latent heat released to the atmosphere through condensation, which plays a crucial role in cloud formation and precipitation.								
Unit	W m ⁻²								
Note	The net surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. Sign conventions vary; heat fluxes are sometimes reported with positive values for heat into the ocean. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Latent heat flux is associated with the phase change of water during evaporation or condensation and proportional to evaporation. The energy required for surface evaporation cools the ocean surface and moistens the near surface air adding to its buoyancy. The moistened parcel of air can be carried aloft, and the latent heat released to the atmosphere through condensation, which plays a crucial role in cloud formation and precipitation. Surface measured precipitation is often out of balance with evaporation (P-E), which implies moisture convergence/divergence in the atmosphere. In the tropics, latent heat flux is typically an order of magnitude. These fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.								
				Requirements	S				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	10 25 100					
Vertical Resolution			G B T	-	N/A				
Temporal Resolution	h		G B T	1 3 24					
Timeliness	d		G B T	7 30 365					
Required Measurement Uncertainty (2-sigma)	W m ⁻²		G B T	10 15 20					
Stability	W m ⁻² / decade		G B T	1 2 3					
Standards and References	Meghan F. Cro Marine Science https://www.fr Meyssignac, Be imbalance." Fr	nin et al (e, 6, articl contiersin. enoit, et a ontiers in	2019) e 430 org/a I. "Me Marin	 Air-Sea Fluxes v p1-30. rticles/10.3389/fm asuring global oce e Science 6 (2019) 	with a Focus on Heat and Momentum, Frontiers in mars.2019.00430/full ean heat content to estimate the Earth energy): 432.				

4.11 ECV: Sea Ice

4.11.1 ECV Product: Sea Ice Concentration

Name	Sea Ice Concentration (SIC)								
Definition	Fraction of ocean area covered with sea ice.								
Unit	% (or 1)								
Note	Sea ice concentration (in %) or sea ice area fraction (0 1) is a parameter that requires a spatial scale for reference; it is the fraction of a known ocean area (whatever size) covered with sea ice. Sea-ice extent (= the total area of all grid cells covered with sea ice above a certain threshold, often 15%) and sea-ice area (= the total area of all grid cells covered with sea ice using the actual sea-ice area fraction as weight) are indicators derived from sea-ice concentration. Some products report sea-ice concentration intervals, often 15% SIC) defines a sea ice edge.								
				Re	equirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	1	Near-coast applications (e.g. Canadian Arctic Archipelago). Possibly not as sea-ice concentration but as ice / no-ice (edge).				
			В	5	Regional analysis				
				25	Trend analysis, global monitoring				
			Т	50	Limit for trend analysis, evaluation of global GCM simulations				
Vertical			G	<1	SIC vary on a sub-daily time scale (opening/closing of leads)				
Resolution	N/A		В	1 7	Ocean and Atmosphere reanalyses, daily monitoring of the sea- ice cover				
			Т	30					
Temporal			G	<1	SIC vary on a sub-daily time scale (opening/closing of leads)				
Resolution	d		В	1 7	Ocean and Atmosphere reanalyses, daily monitoring of the sea-ice cover				
			Т	30					
Timeliness			G	1-2					
	d		В	7	Operational monitoring with climate indicators, update of reanalyses				
			Т	30	Update of monthly climate indicators				
Required			G	5					
Uncertainty	% SIC		В						
(2-sigma)			Т	10					
Stability			G	5					
	%/dec		В						
			Т						
Standards and References	Lavergne the Globa Ono, J., H in the Arc https://do	and Kern, et I Climate Ob I. Tatebe, an tic Sea Ice: <i>p</i> i.org/10.117	al. (2 servir d Y. k APPOS 75/JCI	2022). A ng Syster Komuro, SITE Dat LI-D-18-	New Structure for the Sea Ice Essential Climate Variables of m, BAMS, DOI 10.1175/BAMS-D-21-0227.1. 2019: Mechanisms for and Predictability of a Drastic Reduction a with Climate Model MIROC. J. Climate, 32, 1361–1380, 0195.1.				

4.11.2 ECV Product: Sea Ice Thickness

Name	Sea Ice Thickness										
Definition	The vertical distance between sea ice surface and sea ice underside of the ice-covered fraction of an area.										
Unit	m	m									
Note	Sea-ice thickness is together with the sea-ice area derived from the sea-ice concentration the key ingredient to compute the sea-ice volume and mass. Long-term sea-ice volume and mass changes are considered as the integral response of climate change exerted on the polar regions.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	1	Required to resolve small scale impacts of deformation events on sea-ice thickness distribution for more accurate estimation of dynamics on mass balance.						
					Enables to resolve thickness distribution approaching floe scale for improved ice mass flux.						
					Needed to obtain enhanced ice-type specific ice thickness information and more accurate estimates of ice production.						
			В	25 distribution	Required for the analysis of regional sea-ice thickness distributions						
					Needed to further develop and improve GCMs and to improve regional climate analyses						
				25 mean & median	Needed to refine hemispheric trend analyses and to analyze basin-wide / regional sea-ice thickness and mass trends						
					Required for the evaluation of the next generation of CMIP6 GCMs						
			Т	50	Minimum useful horizontal resolution to compute hemispheric trends in sea-ice thickness and mass and to evaluate GCMs / CMIP6						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	d		G	daily year- round	To resolve ice production in polynyas and during early freeze-up						
					thickness distribution						
			В	weekly	To better monitor the impact of longer-lasting weather						
				year-round	conditions on sea-ice formation and melt.						
				monthly year-round	thickness						
			Т	monthly wintertime	Minimum temporal resolution required to adequately monitor the winter-time sea-ice thickness and mass increase						
Timeliness	d		G	1	Operational monitoring with climate indicators, update of reanalyses						
			В	7	Update of monthly climate indicators						
			Т	30							
Required Measurement Uncertainty	m		G	0.05	To improve monitoring of thin ice areas and associated heat fluxes To enhance sea-ice production estimation						
(2-sigina)					To monitor diurnal changes in sea-ice thickness during growth and melt						
			В	0.1	To monitor regional- and large-scale sea-ice thickness changes in the Arctic towards the end of the growing season and in the Antarctic.						
			Т	0.25	Minimum useful uncertainty to be able to monitor basin- wide sea-ice thickness changes at monthly scale.						
			G								

Stability	<i>.</i>	B T		
	m/decade			
Standards and References	Lavergne and the Global Cli	l Kern, et al. (mate Observi	(2022). A Nev ng System, B	V Structure for the Sea Ice Essential Climate Variables of AMS, DOI 10.1175/BAMS-D-21-0227.1.

4.11.3 ECV Product: Sea Ice Drift

Name	Sea Ice D	Sea Ice Drift									
Definition	Rate of movement of sea ice due to winds, currents or other forces.										
Unit	km d ⁻¹										
Note	1) Sea Ice	1) Sea Ice drift is a 2D vector, expressed with two components along two orthogonal directions.									
	2) The unce	ertainty requ	irem	ents belo	ow are for both components (not the total velocity).						
	3) The unce	ertainty requ	irem	ents belc	ow are for a reference displacement period of 24 hours.						
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal			G	1	Near-coast applications (e.g. Canadian Arctic Archipelago).						
Resolution	km		В	5	Regional analysis, deformations, volume fluxes through narrow gates.						
				25	Trend analysis, sea-ice tracking, volume fluxes						
			Т	50	Limit for trend analysis, evaluation of global GCM simulations						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	d		G	<1	Sea-ice motion can change very rapidly with winds or internal forces						
			В	1							
				7							
			Т	30	Large-scale circulation patterns and trends						
Timeliness			G	1-2							
	d		В	7	Update of monthly climate indicators						
			Т	30							
Required Measurement	km d⁻¹	see Note	G	0.25	Requires high-resolution imaging (e.g. SAR). For deriving deformation.						
Uncertainty (2-sigma)			В	3							
(2 Signa)			Т	10							
Stability			G								
	%/decade		В								
			Т								
Standards and	Lavergne a the Global	nd Kern, et a Climate Obse	al. (2 erving	022). A I g System	New Structure for the Sea Ice Essential Climate Variables of , BAMS, DOI 10.1175/BAMS-D-21-0227.1.						
References	Dierking, W parameters https://doi	/., et al., Est from satelli org/10.5194	imati te im <mark>I/tc-1</mark>	ng statis ages and .4-2999-	tical errors in retrievals of ice velocity and deformation I buoy arrays, The Cryosphere, 14(9), 2999-3016, 2020, 2020						

4.11.4 EC	V Product:	Sea	Ice Age	
-----------	------------	-----	---------	--

Name	Sea Ice Age								
Definition	The age of an ice parcel is the time since its formation or since the last significant (e.g. summer) melt.								
Unit	day								
Note	An ice parcel formed during the freezing season is in its first year of existence and can be defined as first-year ice, its age is less than 1 year. When it survives the first exposure to significant melting (e.g. summer season) it becomes second-year ice (its age is between 1 and 2 years). This continues for each summer melt season the ice parcel survives. In other words, the age of an ice parcel is rounded up to the nearest integer year with each exposure to significant melting (typically the summer melt season). While in the Arctic, it has been common practice to use the date of the overall summer minimum extent for the reclassification of the sea ice, there are no well accepted definitions for the Southern Ocean and region-specific dates might be needed. Here we do not define any specific details what								
	the definition of the significant melt is. The reclassification of sea ice into an older ice category at significant melt aims at linking the sea- ice age information to the physical properties of the ice, including its air bubbles content, density, salinity, surface roughness, etc. All these physical properties change drastically through melting and especially during the first summer melt								
	Sea ice age of ages with ice age has l year classes reported as method ofte some distrib	Sea ice age can be reported as the representative/dominating age in an area or as the distribution of ages within an area. Sea ice age can be computed with different approaches. Traditionally, sea- ice age has been derived from either Lagrangian tracking techniques and presented as areas with year classes (age = 1, 2, 3, etc.) or from analysis of microwave emissivity and backscattering and reported as age categories (e.g. first-year ice, second year ice, multiyear ice). The latter retrieval method often refers to the product as sea-ice type. Age concentration products exist that report some distribution of age within grid cells.							
				Req	uirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	1	Needed to resolve spatial differences in age when refreezing occurs between larger ice floes and plates, or in divergent icefields. Will capture details in the Canadian Archipelago. Needed to optimally resolve the age of narrow land-fast ice				
			В	5 25	areas fringing Antarctica. Needed for better capturing regions dominated by broken old ice (like the Beaufort Gyre), and elongated filaments of certain age classes. Needed to resolve the age of larger- scale land-fast ice areas in Antarctica important for buttressing ice shelves. Reasonable capability in Canadian Archipelago, except for narrower straits. Regional analysis. General mapping of ice classes, used for climate monitoring e.g. trend analysis, climate index of old ice. Also, used as				
					background information for ice thickness retrieval. Lack of resolution for smaller areas, such as in the Canadian Archipelago.				
			Т	50	Limit for trend analysis				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal			G	<1					
Resolution	d		В	1 7	The edges between ice classes can move a lot during a d however the areal coverage of the >1year classes is assumed not to have large daily variability.				
			Т	30					
Timeliness			G	1-2	Operational monitoring with climate indicators				
	d		В	7					
			Т	30	Useful for input into monthly altimeter-based sea ice thickness estimates.				
Required Measurement Uncertainty	d		G	7	Age information as "time since its formation or since the last significant (e.g. summer) melt". We do report the age of the ice within the on-going freezing season.				
(2-sigma)			В	182	Age as year classes (1,2,3,). Requirement on accuracy is 182 days (half a year) because we do not report the age of the ice within the on-going freezing season.				

			Т	> 1 year	As a minimum, a meaningful sea-ice age product should separate ice into seasonal ice and perennial ice, with a probability of correct classification of 70%. The dominating ice class is reported.		
Stability	d		G				
			В				
			Т				
Standards and References	Lavergne an the Global C	Lavergne and Kern, et al. (2022). A New Structure for the Sea Ice Essential Climate Variables of the Global Climate Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1.					

4.11.5 ECV Product: Sea Ice Temperature

Name	Sea Ice Surface Temperature (IST)								
Definition	The surface temperature of sea ice or snow on sea ice, either a calibrated radiometric or thermometric in situ measurement.								
Unit	Kelvin (K)								
Note	The IST requirements below are based on several requirement/recommendation documents from relevant communities and institutions, e.g. WMO, GCOS, GMES, Copernicus/CMEMS, ESA CCI, NOAA, and others. Requirements for IST range widely in both in values and metric and the given values are based on these documents and expert judgments from the OSISAF High Latitude team. Uncertainty requirements are valid for automatically cloud screened day and night time IST data compared with surface temperature reference data of high quality, e.g. radiometric in situ observations.								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km	Methe	[¹]	1	GCOS GMES Copernicus/CMEMS				
Resolution	KIII		В	5 10	GCOS, GMES, Copernicus/CMEMS				
			Т	50	WMO				
Vertical			G	Skin	N/A				
Resolution			В	Skin					
			Т	Skin					
Temporal			G	3 h	to capture diurnal cycle, GCOS, Copernicus/CMEMS				
Resolution	d		В	1	GCOS, Copernicus/CMEMS				
			Т	7	Can allow full coverage (cloud cover)				
Timeliness			G	1-2					
	d		В	7					
			Т	30					
Required Measurement	к		G	1.0	Copernicus/CMEMS, GMES, EUMETSAT/OSISAF, Dybkjær et al., 2019				
(2-sigma)			В	3.0	Copernicus/CMEMS, GMES, EUMETSAT/OSISAF, Dybkjær et al., 2019				
			Т	6.0	Copernicus/CMEMS, GMES, EUMETSAT/OSISAF, Dybkjær et al., 2019				
Stability	K/decade		G	0.1	As defined in the GCOS LST ECV requirements				
			В	0.2					
			Т	0.3	As defined in the GCOS LST ECV requirements				
Standards and References	Lavergne an the Global C	Id Kern, et a Climate Obse	al. (20 erving)22). A l I System	New Structure for the Sea Ice Essential Climate Variables of , BAMS, DOI 10.1175/BAMS-D-21-0227.1.				
	Sea Ice Wor	king Group,	har ne http	://www.	climate-cryosphere.org/about, 2012.				
	Johannesen Position pap Copernicus	, T. Lavergn er Polar and Marine Envi	e, P d snow	Y. LeTra w cover a ent Moni	applications User Requirements Workshop Brussels, toring Service, Mercator Ocean.				
	CMEMS (20: Copernicus	17) CMEMS Marine Envii	requi ronme	rements ent Moni	for the evolution of the Copernicus Satellite Component. toring Service, Mercator Ocean and CMEMS partners.				
	CMEMS (202 (spreadshee	20) CMEMS et)	Dashl	board Up	ostream Satellite Data Requirements, V10.0 March 2020				
	Copernicus Copernicus doi:10.2760	(2018a) Duo Polar Missio /22832, 20	choss n Pha 18.	ois, G., I se 1 Rep	P. Strobl, V. Toumazou (Eds.) User Requirements for a port - User Requirements and Priorities. JRC Technical Report,				
	Copernicus. Copernicus doi:10.2760	(2018b) Du Polar Missio /44170, 201	ichoss n Pha 18.	sois, G., se 2 Rep	P. Strobl, V. Toumazou (Eds.) User Requirements for a port - High-level mission requirements. JRC Technical Report,				
	Dybkjær, G. and algorith output prod document, v	, R. Tonboe ms for Ice S uct requiren version 2.3.	, M. N Surfac nents EUME	Winstrup ce Tempe and soft ETSAT do	and J. L. Høyer (2019) Review of state-of-the-art methods erature retrieval algorithms - Including consolidate and refine tware specification, Product requirement and baseline ocument Reference Number: EUM/OPS-COPER/19/1065840.				

GCOS (2016) The Global Observing System for Climate: Implementation Needs (World Meteorological Organization, GCOS-200).
 OSI SAF CDOP 3 (2018) Product Requirement Document, http://www.osi-saf.org/sites/default/files/dynamic/public_doc/osisaf_cdop3_gen_prd_1.4.pdf, Version: 1.4, 2018

4.11.6 ECV Product: Sea Ice Surface Albedo

Name	Sea Ice Surface Albedo								
Definition	Broadband snow or ice surface albedo								
Unit	1								
Note	Albedo is a measure of how much solar radiation incident at a surface of known area is reflected back; it is the ratio between incoming and outgoing surface short-wave radiation. The value range is 0 to 1. The surface albedo of sea ice covers almost the entire range with very thin ice such as dark nilas having an albedo of ~ 0.1 and sea ice with a fresh snow cover having an albedo of ~0.9. The albedo of bare (snow-free) sea ice depends strongly on sea-ice age. Predominantly in the Arctic, during summer, melt water forms complex patterns of melt ponds on top of the sea ice that reduce the albedo considerably - depending on areal fraction and depth of the ponds and on ice age. Thus, not only the surface albedo, but also its partition into surface types (openings in the sea ice cover, melt ponds, bare ice, snow, etc.) is critical to observe. Through its relation to surface melt processes, albedo observations are key to improving the satellite retrieval of other sea-ice variables, such as sea-ice concentration. Albedo is the key parameter describing the amount of solar energy available for ice melt and in-ice and under-ice primary production.								
				Rec	juirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	1	Needed for mapping of larger flooded ice areas in the Arctic during summer (e.g. in river estuaries, or fjords) Improved mapping of spring / summer melt progress in the				
					Arctic as a function of ice age.				
			В	5	Needed to reliably monitor albedo evolution of larger thin ice areas associated with polynyas.				
					Needed to monitor albedo evolution in narrow passages such as the Canadian Archipelago or around the Antarctic Peninsula				
				10	Needed to discriminate adequately between the albedo of ice of different age during melt and re-freeze in the Arctic.				
					Needed to reliably detect surface melt / refreeze event- induced changes in snow surface albedo in the Antarctic				
			Т	50	Minimum horizontal resolution to derive basin-wide trends in albedo and solar energy input				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	d		G	3 h	Required for an optimal quantification of surface albedo (and hence solar energy input) under highly variable cloud / surface illumination (changes surface topography) / surface conditions (fresh snow and pond drainage change surface albedo at ~ hourly scale)				
			В	1	Required to accurately quantify the seasonal cycle and				
					Enables us to take into account the impact of melt-pond surface area changes and snowfall on diurnal variations in albedo and surface available solar radiation				
			Т	7	Minimum temporal resolution required to derive basin-scale changes in seasonal surface available solar radiation input, melt onset, and commence of freeze-up as well as to estimate onset of under-ice primary production.				
Timeliness	d		G	1-2					
			В	7					
			Т	30					
Required			G	0.01	Required to discriminate between new ice and open water				
Measurement Uncertainty (2-sigma)					and to detect submerged ice Needed to accurately observe sub-grid scale changes in ice surface conditions				

			В	0.05	Required to reliably monitor changes in snow properties: fresh - old - melting and to be able to distinguish between melting snow and bare ice Needed to differentiate between melt ponds on ice of different age and to identify melt-pond freeze-up		
			Т	0.1	Minimum measurement uncertainty to discriminate between ice / no ice or cold snow-covered / bare ice or to identify melt ponds		
Stability		G					
			В				
			Т				
Standards and	Lavergne ar the Global C	id Kern, et a Climate Obse	al. (20 erving)22). A N I System	New Structure for the Sea Ice Essential Climate Variables of , BAMS, DOI 10.1175/BAMS-D-21-0227.1.		
References	Perovich, D. 2802-2809,	Perovich, D. K., et al., Anatomy of a late spring snowfall on sea ice, Geophys. Res. Lett., 44(6), 2802-2809, 2017, https://doi.org/10.1002/2016GL071470					
	Ardyna, M. a Change, 10	and K. R. Ar (10), 892-90	rigo,)3, 2(Phytopla)20, <mark>http</mark>	nkton dynamics in a changing Arctic Ocean, Nat. Climate s://doi.org/10.1038/s41558-020-0905-y		

4.11.7 ECV Product: Snow Depth on Sea Ice

Name	Snow Depth on Sea Ice										
Definition	The vertical extent of the snow cover on top of the sea ice.										
Unit	m										
Note	Snow has a heat conductivity which is an order of magnitude smaller than that of sea ice. It is hence very efficient at isolating sea ice from the atmosphere already at a depth of a few centimeters. Snow reduces the ocean-atmosphere heat flux. Thick snow retards winter-time ice growth and summer-time ice melt onset. Snow therefore has a profound impact on the overall heat and sea-ice mass budget of the polar oceans. Snow has the highest short-wave albedo of the snow-sea ice-system. Snow-covered sea ice can reflect about 25% more solar radiation than any kind of bare sea ice. Snowfall during melt-onset can delay sea-ice melt for several days to a few weeks due to the surface albedo change imposed. Snow is a critically required parameter for sea-ice thickness retrieval using altimetry.										
	observations for decades. While the retrieved using multi-frequency satellite microwave radiometer observations for decades. While the retrieval is mature and accurate over undeformed seasonal sea ice during winter conditions, deformation, melt conditions and multiyear ice pose challenges. To solve these is currently explored using innovative combinations of satellite microwave radiometer observations using even more frequencies than so far with radar and laser altimeter observations, in situ observations from buoys, airborne surveys and specifically developed snow models informed with meteorological data from numerical modeling.										
				Requi	rements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	1							
Resolution			В	25	Distribution						
				25							
			Т	50	Minimum horizontal resolution to derive basin-wide trends Minimum spatial resolution to support sea-ice thickness retrieval from altimetry						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution			G	daily year- round	Needed for highly accurate year-round daily sea-ice thickness retrieval using satellite altimetry Required to define begin and end of spring snow melt on sea ice Needed to improve estimates of sea-ice melt progress or slow down Would enable estimation of the amount of snow-to-ice conversion related to flooding - refreeze events						
			В	weekly year-round	Needed for year-round sea-ice thickness retrieval using satellite altimetry at weekly time scale						
				monthly year-round	Required to enhance evaluation of ocean-atmosphere heat flux estimates during the shoulder seasons and studies about sea-ice melt and freeze onset Required for year-round sea-ice thickness retrieval using satellite altimetry						
			т	monthly, wintertime	Minimum temporal resolution to support sea-ice thickness retrieval using satellite altimetry						
Timeliness			G	1-2							
	d		В	7							
			Т	30							
Required			G	0.01							
Measurement	m		В	0.05							
(2-sigma)			Т	0.1	Minimum requirement to ensure a sea-ice thickness retrieval uncertainty < 0.5 m and < 0.8 m using radar and laser altimetry, respectively.						
Stability	m/decade		G								
			B T								
--------------------------------	---	---	--	---	--						
Standards and References	Lavergne an the Global C Kwok, R., ar thickness, J. Giles, K. A., Strait in May https://doi.c	d Kern, 6 Ilimate O nd G. F. (Geophy et al., C 2002, F org/10.1(et al. (bservi Cunnir s. Res ombin Rem. S D16/j.1	(2022). A New ng System, B ngham, ICESa ., 113, C0801 ed airborne la Sens. Environ. rse.2007.02.0	v Structure for the Sea Ice Essential Climate Variables of AMS, DOI 10.1175/BAMS-D-21-0227.1. t over Arctic sea ice: Estimation of snow depth and ice 0, 2008, https://doi.org/10.1029/2008JC004753 ser and radar altimeter measurements over the Fram , 111(2-3), 182-194, 2007, 37						

5. **BIOGEOCHEMISTRY**

5.1 ECV: Oxygen

5.1.1 ECV Product: Dissolved Oxygen Concentration

Name	Dissolved Oxygen Concentration										
Definition	Concentration of dissolved oxygen (O ₂) in the water column.										
Unit	µmol kg ⁻¹										
Note	This Ess concent by both on a nu	This Essential Ocean Variable (EOV)/ECV is a measurement of sub-surface dissolved oxygen (O ₂) concentration in the ocean, expressed in units of μ mol kg ⁻¹ . Data on dissolved oxygen is obtained by both discrete (chemical analysis) and continuous (sensor measurements) sampling performed on a number of observing platforms (ship-based, fixed-point, autonomous).									
Requirements											
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	300 1-100	For global coverage, spatial resolution refers to distance between transects, not between sampling stations. Coastal						
			В								
			Т	2000 300	Coastal						
Vertical			G	-							
Resolution			В	-							
			Т	-							
Temporal			G	monthly							
Resolution			В								
			Т	decadal							
Timeliness	month		G	6							
			В								
			Т	12							
Required	µmol ka ⁻¹		G	0.5							
Uncertainty	Ng		В	2							
(2-sigma)			1	2							
Stability			G								
			B								
			Τ.								
Standards and References	Require See the	ments based EOV Specific	on ch ation	aracteristi Sheet for	c scales and magnitude of signal of phenomena to observe. details and references (www.goosocean.org/eov).						

5.2 ECV: Nutrients

5.2.1 ECV Product: Silicate

Name	Silicate								
Definition	Concentration of Si(OH) ₄ in the water column.								
Unit	µmol kg ⁻¹								
Note	The availability of nutrients in seawater is estimated from measurements of concentration of inorganic macronutrients: nitrate (NO ₃), phosphate (PO ₄), silicic acid (Si(OH) ₄), ammonium (NH ₄), and nitrite (NO ₂), expressed in umol kg ⁻¹ of seawater. Nutrients ECV products are primarily obtained from discrete sample measurements using analytical chemical methods (colorimetric reactions) but nitrate concentration is also measured by sensors using the ultraviolet absorption method. Linear combination of nitrate and phosphate, defined as N*, and the difference between silicic acid and nitrate concentrations, Si*, provide estimates of nutrient supply/removal relative to global Redfield stoichiometry and are widely used for mapping and detecting trends in global nutrient cycling.								
				Rec	uirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	1000					
Resolution			Р	0.1-100	Coastal				
			в	2000					
			I	2000	Coastal				
Vertical			G	100					
Resolution			B	_					
			т	_					
Temporal	month		G	3					
Resolution			Ũ	5					
				1	Coastal				
			В						
			Т	decadal					
Timeliness	month		G	6					
			В						
			Т	12					
Required	%		G	1					
Measurement			В						
(2-sigma)			Т	3					
Stability			G						
			В						
			Т						
Standards and References	Requirem EOV Spec	ents based on ification Sheet	chara for d	eteristic so etails and i	cales and magnitude of signal of phenomena to observe. See the references (www.goosocean.org/eov).				

Name	Phosphate								
Definition	Concentration of PO ₄ in the water column.								
Unit	µmol kg ⁻¹								
Note	The availability of nutrients in seawater is estimated from measurements of concentration of inorganic macronutrients: nitrate (NO ₃), phosphate (PO ₄), silicic acid (Si(OH) ₄), ammonium (NH ₄), and nitrite (NO ₂), expressed in umol kg ⁻¹ of seawater. Nutrients ECV products are primarily obtained from discrete sample measurements using analytical chemical methods (colorimetric reactions) but nitrate concentration is also measured by sensors using the ultraviolet absorption method. Linear combination of nitrate and phosphate, defined as N*, and the difference between silicic acid and nitrate concentrations, Si*, provide estimates of nutrient supply/removal relative to global Redfield stoichiometry and are widely used for mapping and detecting trends in global nutrient cycling.								
				Re	equirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	1000					
Resolution				0.1-100	Coastal				
				2000					
			1	2000	Capatal				
Vortical			C	100					
Resolution			G	-	N/A				
			т						
Temporal	month		G	З					
Resolution	monen		Ŭ	5					
				1	Coastal				
			В						
			Т	decadal					
Timeliness	month		G	6					
			В						
			Т	12					
Required	%		G	1					
Measurement			В						
(2-sigma)			Т	3					
Stability			G						
			В						
			Т						
Standards and References	Requirer EOV Spe	nents based of cification Shee	n char et for (acteristic s details and	scales and magnitude of signal of phenomena to observe. See the direferences (www.goosocean.org/eov).				

5.2.2 ECV Product: Phosphate

Name	Nitrate									
Definition	Concentration of NO ₃ in the water column.									
Unit	µmol kg ⁻¹									
Note	The availability of nutrients in seawater is estimated from measurements of concentration of inorganic macronutrients: nitrate (NO ₃), phosphate (PO ₄), silicic acid (Si(OH) ₄), ammonium (NH ₄), and nitrite (NO ₂), expressed in umol kg ⁻¹ of seawater. Nutrients ECV products are primarily obtained from discrete sample measurements using analytical chemical methods (colorimetric reactions) but nitrate concentration is also measured by sensors using the ultraviolet absorption method. Linear combination of nitrate and phosphate, defined as N*, and the difference between silicic acid and nitrate concentrations, Si*, provide estimates of nutrient supply/removal relative to global Redfield stoichiometry and are widely used for mapping and detecting trends in global nutrient cycling.									
				Re	equirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	1000 0.1-100	Coastal					
			В							
			Т	2000						
				100	Coastal					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	month		G	3						
Resolution										
			_	1	Coastal					
				decadal						
Timeliness	month		G	6						
			в	10						
	0/		1	12						
Required Measurement	%		G	1						
Uncertainty			в	2						
(2-sigma)			1	3						
Stability			G							
			В							
			Т							
Standards and References	Requiren EOV Spe	nents based or cification Shee	t for	acteristic s details and	scales and magnitude of signal of phenomena to observe. See the I references (www.goosocean.org/eov).					

5.2.3 ECV Product: Nitrate

5.3 ECV: Ocean Inorganic Carbon

5.3.1 ECV Product: Total Alkalinity (TA)

Name	Total Alka	linity (TA)							
Definition	Total concentration of alkaline substances.								
Unit	µmol kg ⁻¹								
Note									
				Requireme	ents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	1000 100	Coastal				
			В						
			Т	2000 1000	Coastal				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	month		G	3					
Resolution			В						
			Т	decadal					
Timeliness	month		G	6					
			В						
			Т	12					
Required	µmol kg⁻¹		G	2					
Uncertainty			В						
(2-sigma)			Т	2					
Stability			G						
			В						
			Т						
Standards and References	Requiremer EOV Specifi	nts based on char cation Sheet for o	acteri details	stic scales and and referenc	d magnitude of signal of phenomena to observe. See the es (www.goosocean.org/eov).				
	Additional r (GLODAP; N ON) Implen	equirements base www.glodap.info) nentation Strateg	ed on ; for p y (htt at.info	the Global Oc oH based on th p://goa-on.or o).	ean Data Assimilation Project ne Global Ocean Acidification Observing Network (GOA- g/about/strategy.php); for pCO2 from the Surface Ocean				

Name	Dissolved Inorganic Carbon (DIC)										
Definition	Sum of d	issolved inorga	nic car	bon species	(CO ₂ , HCO ⁻ , CO3 ²⁻) in water.						
Unit	µmol kg ⁻¹										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	1000							
Resolution			_	100	Coastal						
			В								
			Т	2000							
				1000	Coastal						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	month		G	3							
Resolution			В								
			Т	decadal							
Timeliness	month		G	6							
			В								
			Т	12							
Required	µmol		G	2							
Measurement	kg⁻¹		В								
(2-sigma)			Т	2							
Stability			G								
			В								
			Т								
Standards and References	Requirements based on characteristic scales and magnitude of signal of phenomena to observe. See the Essential Ocean Variables (EOV) Specification Sheet for details and references (www.goosocean.org/eov).										
	Additiona (GLODAP ON) Impl Ocean CO	al requirements ?; www.glodap. lementation Str D ₂ Atlas (SOCAT	based info); f ategy ; www	on the Glob or pH based (http://goa- .socat.info).	al Ocean Data Assimilation Project on the Global Ocean Acidification Observing Network (GOA- on.org/about/strategy.php); for pCO ₂ from the Surface						

5.3.2 ECV Product: Dissolved Inorganic Carbon (DIC)

5.3.3 ECV Product: pCO₂

Name	pCO ₂									
Definition	Surface ocean partial pressure of CO2.									
Unit	μatm									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	100						
Resolution			В							
			Т	1000						
				<1000	Coastal					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal			G	monthly						
Resolution			В							
			Т	decadal						
Timeliness	month		G	6						
			В							
			Т	12						
Required	µatm		G	2						
Measurement			В							
(2-sigma)			Т	2						
Stability			G							
			В							
			Т							
Standards and References	Requirements based on characteristic scales and magnitude of signal of phenomena to observe. See the EOV Specification Sheet for details and references (www.goosocean.org/eov).									
	Additional r (GLODAP; v ON) Implen CO ₂ Atlas (S	equirements base www.glodap.info) nentation Strateg SOCAT; www.soc	ed on ; for p y (htt at.info	the Global Oc oH based on th p://goa-on.or o).	ean Data Assimilation Project ne Global Ocean Acidification Observing Network (GOA- ig/about/strategy.php); for p CO ₂ from the Surface Ocean					

5.4 ECV: Transient tracers

5.4.1 ECV Product: ¹⁴C

Name	14C												
Definition	Ratio of	sample to	refere	ence value (Δ14)) in the water column.								
Unit	%0												
Note													
		Requirements											
Item needed	Unit	Metric	[1]	Value	Notes								
Horizontal	km		G	2000	Regional								
Resolution				200	Deep water formation areas								
			В										
			Т	2000									
Vertical			G	-	N/A								
Resolution			В	-									
			Т	-									
Temporal	У		G	10	Regional								
Resolution				2	Deep water formation areas								
			В										
			Т	10									
Timeliness	У		G	1									
			В										
			Т	2									
Required	‰		G	0.4									
Measurement			В										
(2-sigma)			Т										
Stability			G	decadal	Regional								
				1y	Deep water formation areas								
			В										
			Т	decadal									
Standards and References	Requirer See the	nents base EOV Specif	d on icatio	characteristic sco on Sheet for deta	ales and magnitude of signal of phenomena to observe. ils and references (www.goosocean.org/eov).								

Name	SF ₆									
Definition	Concen	itratior	n of SF6	gas in the wat	ter column.					
Unit	fmol kg	j ⁻¹								
Note										
					Requirements					
Item needed	Unit	Met ric	[1]	Value	Notes					
Horizontal Resolution	km		G	2000 200	Regional Deep water formation areas					
			B T	2000						
Vertical			G	-	N/A					
Resolution			B T	-						
Temporal Resolution	Temporal y Resolution		G	10 2	Regional Deep water formation areas					
			В т	10						
Timeliness	V		G	1						
	7			-						
			Т	2						
Required	‰		G	0.4						
Measurement			В							
(2-sigma)			Т							
Stability			G	decadal	Regional					
				1y	Deep water formation areas					
			В							
			Т	decadal						
Standards and References	Require See the	ements e EOV	s based Specific	on characteris ation Sheet for	tic scales and magnitude of signal of phenomena to observe. r details and references (www.goosocean.org/eov).					

5.4.2 ECV Product: SF₆

5.4.3 ECV Product: CFC-11

Name	CFC-11											
Definition	Concentr	ration o	of CFC-1	.1 gas in the w	ater column.							
Unit	pmol kg	pmol kg ⁻¹										
Note												
	Requirements											
Item needed	Unit	Met ric	[1]	Value	Notes							
Horizontal Resolution	km		G	2000 200	Regional Deep water formation areas							
			В									
			Т	2000								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal Resolution	У	Ý	G	10 2	Regional Deep water formation areas							
			В									
			Т	10								
Timeliness	month		G	6								
			В									
			Т	6								
Required	‰		G	1								
Measurement			В									
(2-sigma)			Т									
Stability			G	decadal	Regional							
				1y	Deep water formation areas							
			В									
			Т	decadal								
Standards	Requiren	nents t	based or	n characteristic	scales and magnitude of signal of phenomena to observe.							
and References	See the	EOV Sp	pecificat	ion Sheet for d	etails and references (www.goosocean.org/eov).							

5.4.4 ECV Product: CFC-12

Name	CFC-12	CFC-12									
Definition	Concentra	ation of CF	C-12 ga	as in the wate	r column.						
Unit	pmol kg ⁻¹										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	2000	Regional						
Resolution				200	Deep water formation areas						
			В								
			Т	2000							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	у		G	10	Regional						
Resolution				2	Deep water formation areas						
			В								
			Т	10							
Timeliness	month		G	6							
			В								
			Т	6							
Required	‰		G	1							
Measurement			В								
(2-sigma)			Т								
Stability			G	decadal	Regional						
				1y	Deep water formation areas						
			В								
			Т	decadal							
Standards	Requirem	ents based	d on cha	aracteristic sca	ales and magnitude of signal of phenomena to observe.						
and References	See the E	OV Specifi	cation S	Sheet for deta	ils and references (www.goosocean.org/eov).						

5.5 ECV: Ocean Nitrous Oxide N₂O

5.5.1 ECV Product: Interior Ocean Nitrous Oxide N₂O

Name	Interior Ocean Nitrous Oxide N2O										
Definition	Concent	ration of N ₂ O	gas in t	he water colum	ın.						
Unit	nmol kg ⁻¹										
Note	Nitrous oxide (N_2O) is an atmospheric trace gas which is measured in the water column of all major ocean basins at concentrations spanning three orders of magnitude. The ocean is a major source (around 25%) of N_2O gas to the atmosphere.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	<2000 <500	Coastal						
			В								
			Т	2000							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	month		G	3							
Resolution	esolution	В									
		Т	3 weekly to monthly	Coastal							
Timeliness	У		G	1							
			В								
			Т	2							
Required	%		G	<1							
Measurement			В								
(2-sigma)			т	5							
Stability			G								
			В								
			Т								
Standards and	Values b measure	ased on the ements.	characte	ristic scales of t	the phenomena which are observed using N_2O						
References	For more (www.go GOOS R (https://	e details and posocean.org eport No. 225 www.goosoc	referenc /eov), p 5 ean.org/	es see the Nitro ublications from /index.php?opti	ous Oxide EOV Specification Sheet SCOR WG 143 (https://scor-int.org/group/143/) and the on=com_oe&task=viewDocumentRecord&docID=20428).						

5.5.2 ECV Product: N₂O Air-sea Flux

Name	N ₂ O Air-sea Flux										
Definition	Amount	of N2O produc	ed per	area per year.							
Unit	µmol m ⁻² y ⁻¹										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	<2000 <500	Coastal						
			В								
			Т	2000							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	emporal month esolution		G	3 weekly to monthly	Coastal						
			В								
			Т	Decadal							
Timeliness	У		G	1							
			В								
			Т	2							
Required			G	<1							
Measurement Uncertainty			В								
(2-sigma)			Т	5							
Stability	%		G								
			В								
			Т								
Standards and References	Values ba measure (www.go GOOS Re (https://	ased on the ch ments. For mo osocean.org/e port No. 225 www.goosocea	aracte ore det ov), p an.org	eristic scales of the calls and reference of the	ne phenomena which are observed using N ₂ O tes see the Nitrous Oxide EOV Specification Sheet SCOR WG 143 (https://scor-int.org/group/143/) and the n=com_oe&task=viewDocumentRecord&docID=20428).						

5.6 ECV: Ocean Colour

5.6.1 ECV Product: Chlorophyll-a

Name	Chlorophyll-a									
Definition	Concentration of chlorophyll-a pigment in the surface water.									
Unit	μg I-1									
Note	Ocean colour is the radiance emanating from the ocean normalized by the irradiance illuminating the ocean. Products derived from ocean colour remote sensing (OCRS) contain information on the ocean albedo and information on the constituents of the seawater, in particular, phytoplankton pigments such as chlorophyll-a.									
				Re	quirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	4						
Resolution			В							
			Т	4						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	d		G	1						
Resolution			В							
			Т	7						
Timeliness			G							
			В							
			Т							
Required	%		G	30						
Uncertainty			В							
(2-sigma)			Т	30						
Stability	%/decade		G	3						
			В							
			Т	3						
Standards and References	For more do (www.goos	etails and refe ocean.org/eov	rence).	s see th	e Ocean Colour EOV Specification Sheet					

5.6.2 ECV Product: Water Leaving Radiance

Name	Water Leaving Radiance								
Definition	Amount of light emanating from within the ocean.								
Unit	dimensionless								
Note	Ocean colour is the radiance emanating from the ocean normalized by the irradiance illuminating the ocean. Products derived from ocean colour remote sensing (OCRS) contain information on the ocean albedo and information on the constituents of the seawater, in particular, phytoplankton pigments such as chlorophyll-a.								
				Re	quirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	4					
Resolution			В						
			Т	4					
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	d		G	1					
Resolution			В						
			Т	1					
Timeliness			G						
			В						
			Т						
Required	%		G	5	Uncertainty specified for blue and green wavelengths.				
Uncertainty			В						
(2-sigma)			Т	5	Uncertainty specified for blue and green wavelengths.				
Stability	%/decade		G	0.5					
			В						
			Т	0.5					
Standards and References	For more de (www.goos	etails and refe ocean.org/eov	rence).	s see the	e Ocean Colour EOV Specification Sheet				

6. **BIOSPHERE**

6.1 ECV: Plankton

6.1.1 ECV Product: Zooplankton Diversity

Name	Zooplankton Diversity										
Definition	Number of species, functional traits, molecular biology groups (Operational Taxonomic Unit/OUT, other) per unit seawater volume or unit sea surface area, or unit benthos area.										
Unit	[Number of Species per unit volume or area, [Number of traits per unit volume or area], [Number of molecular biology groups per unit volume or area].										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	100	offshore						
Resolution				0.1	nearshore						
			В	1	offshore						
				0.1	nearshore						
			Т	2500	offshore						
				0.1	nearshore						
Vertical	m		G	10 nominal	Depends on method of collection: discrete						
Resolution			В	10 nominal	samples, vertical imaging profiles, net tows						
			Т	surface	recorder/imaging						
Temporal Resolution	month		G	1	Phenology of zooplankton is critical for food web dynamics, and recruitment success for whales, birds, turtles, fish, and invertebrate success						
			В	3							
			Т	12							
Timeliness	У		G	1							
			В								
			Т	2							
Required Measurement Uncertainty	%, count, concentration, weight		G		Depending on observation: Taxonomic unit, trait, molecular group, biomass (wet/dry weight, carbon, nitrogen, protein content)						
(2-sigma)	(biomass)		В								
			Т	5							
Stability			G								
			В								
			Т								
Standards and References	See the Zooplar (www.goosocea	nkton EOV Spe n.org/eov).	cificati	on Sheet for more	e details and references						

6.1.2 ECV Product: Zooplankton Biomass

Name	Zooplankton Biomass											
Definition	Weight of zooplankton by volume.											
Unit	mg l ⁻¹											
Note	It can be dry	It can be dry weight or wet weight.										
		Requirements										
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	km		G	100								
Resolution			В									
			Т	2500								
Vertical	m		G	10								
Resolution			В									
			Т	surface								
Temporal	month		G	1								
Resolution			В									
			Т	12								
Timeliness	У		G	1								
			В									
			Т	2								
Required	%		G									
Uncertainty			В									
(2-sigma)			Т	5								
Stability			G									
			В									
			Т									
Standards and References	See the Zoop (www.gooso	blankton EOV S cean.org/eov).	Specifi	cation Sheet for mo	re details and references							

Name	Phytoplankton Diversity								
Definition	Number of species per unit sample, number and concentration of pigment types per unit sample.								
Unit	Per unit volume or unit surface area								
Note	Phytoplankton are the foundation of near-surface food webs and the non-chemosynthetic support for deep ocean foodwebs through vertical fluxes of particulate organic matter. In addition to their biomass and diversity, measures of primary production are also important.								
				Requirements					
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	100	offshore				
Resolution				0.1	nearshore				
			В	1	offshore				
				0.1	nearshore				
			Т	2000	offshore				
				1	nearshore				
Vertical			G	10 nominal	Depends on method of collection: discrete				
Resolution			В	10 nominal	(oblique vs open/closing), or continuous tow				
			Т	surface	recorder/imaging				
Temporal Resolution	month	G	weekly-monthly	Phenology of phytoplankton is critical for food web dynamics and recruitment success for whales, birds, turtles, fish, and invertebrate success					
			В	3					
			Т	1					
Timeliness			G						
			В						
			Т						
Required Measurement Uncertainty	%		G		Depending on observation: Taxonomic unit, trait, molecular group, biomass (wet/dry weight, carbon, nitrogen, protein content)				
(2-sigma)			В						
			Т	5					
Stability			G						
			В						
			Т						
Standards and References	Field method (1968). A pra (plus numero	ls foundational actical handboc pus and more r	referen ok of se ecent p	ce for operational awater analysis. Fi ublications for spec	oceanography: Strickland, J.D., & Parsons, T.R. sheries Research Board of Canada. Bulletin 167. cific methods)				
	Remote sens	ing of phytopla	inkton li	inks to the Ocean	Colour EOV/ECV				
	See the EOV	See the EOV Specification Sheet for more details and references (www.goosocean.org/eov).							

6.1.3 ECV Product: Phytoplankton Diversity

Name	Phytoplankton Biomass								
Definition	Weight of phytoplankton by volume.								
Unit	mg m ⁻³								
Note									
				Requirements					
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	100					
Resolution			В						
			Т	2000					
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	У	G	Weekly- seasonal						
			В						
			Т	10					
Timeliness			G						
			В						
			Т						
Required	%		G						
Measurement			В						
(2-sigma)			Т	5					
Stability			G						
			В						
			Т						
Standards and References	See the EOV	Specification S	Sheet f	or more details and	l references (www.goosocean.org/eov).				

6.1.4 ECV Product: Phytoplankton Biomass

6.2 ECV: Marine Habitat Properties

6.2.1 ECV Product: Mangrove Cover and Composition

Name	Mangrove Cover and Composition										
Definition	Extent of mangroves and species types in coastal environments (percent or ha and number of species per area).										
Unit	Extent measured in quadrats (e.g. 10x10m), or by pixels (e.g. 30x30m)										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	m ²	Pixel/point in	G	30x30							
Resolution		space	В								
			Т	50x50							
Vertical			G	-							
Resolution			В	-							
			Т	-							
Temporal	oral month Point	Point in time	G	12							
Resolution			В								
			Т	12							
Timeliness	month	Point in time	G	6							
			В								
			Т	12							
Required	Areal extent	Percent	G	10							
Uncertainty			В								
(2-sigma)			Т	20							
Stability	Percent		G	10							
	cover/decade		В								
			Т	50							
Standards and References	Requirements collection for n see https://ww protocol.pdf an See the EOV S	and approaches nangrove compos ww.daf.qld.gov.au nd https://www.co pecification Shee	vary f sition u/da cifor.o	or field based a ata/assets/pdf_ rg/publications/ more details and	nd satellite mapping approaches. For in situ data file/0006/63339/Data-collection- /pdf_files/WPapers/WP86CIFOR.pdf d references (www.goosocean.org/eov)						
		peenication offec		none actuns un							

Name	Seagrass Cover (areal extent)									
Definition	Areal extent of suitable physical habitat (shallow sediment shelf with adequate water quality) supporting seagrass.									
Unit	km ²									
Note	Seagrass areal extent is typically estimated by remote sensing, including satellite, photography from aircraft, and for smaller areas by Unoccupied Aerial vehicle (UAV), i.e., drone. Various methods of image post-processing have been used to convert imagery to seagrass habitat extent.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	m		G	30	Muller-Karger et al., 2018					
Resolution			В							
			Т	250	Muller-Karger et al., 2018					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	У		G	1 week	Muller-Karger et al., 2018					
Resolution			В							
			Т	1						
Timeliness			G							
			В							
			Т							
Required	%		G							
Uncertainty			В							
(2-sigma)			Т	10						
Stability			G							
			В							
			Т							
Standards	Requiremen	nts based on char	acteri	stic scales and	magnitude of signal of phenomena to observe.					
and	See the EO	V Specification SI	heet fo	or more details	and references (www.goosocean.org/eov).					
Kererences	Muller-Karg	ger et al., 2018. h	ttps:/	/doi.org/10.100	02/eap.1682					

6.2.2 ECV Product: Seagrass Cover (areal extent)

6.2.3 ECV Product: Macroalgal Canopy Cover and Composition

Name	Macroalgal Canopy Cover and Composition									
Definition	Abundance of layered macroalgal stands in marine coastal environments.									
Unit	percent or number of individuals/area									
Note	Percent cov macroalgae	ver measured with e such as kelps, a	nin qu bunda	adrats (e.g., 0. nce can be mea	5 x 0.5 m) or transects (e.g., 50 x 5 m). For large as number of individuals per area.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	m ²	point in space	G	0.25						
Resolution			В	1						
			Т	250						
Vertical	m	linear extent	G	1						
Resolution			В	5						
			Т	10						
Temporal	emporal month po	point in time	G	1						
Resolution			В	3						
			Т	12						
Timeliness	month	point in time	G	4						
			В	6						
			Т	12						
Required	Percent		G	10						
Uncertainty	cover		В	20						
(2-sigma)			Т	30						
Stability	Percent		G	20						
cover	cover	over	В	30						
			Т	50						
Standards and References	See the EO	V Specification SI	neet fo	or more details	and references (www.goosocean.org/eov).					

6.2.4 ECV Product: Hard Coral Cover and Composition

Name										
Definition	Percent cov	er of hard cora	I. For c	omposition,	this is broken down by taxonomic or functional groups.					
Unit	70									
Note	Doguiromonto									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	10-100	For resolution of climate impacts, down to 10 km would be ideal; but will require development of remote sensing tools that can distinguish coral cover					
			В							
			Т	1000	Currently global coral data is analyzed at country levels (100s to 1000s of km)					
Vertical Resolution	m		G	10	for resolution of climate impacts, stratification in 10 m would be ideal					
			В							
			Т	*	single layer, global coral data is summarized in a single bin.					
Temporal	У		G	1	annual data ideal					
Resolution			В							
			-	E 40						
			1	5-10	data gaps results in 5-10 y gaps/bins for global analyses					
Timeliness	У		G	0.25	Establishment of open access integrated regional datasets would allow sub-annual access to data					
			В	2						
			Т	5	Current practice requires high-effort compilations					
Required	%		G							
Measurement			В							
(2-sigma)			Т	5						
Stability			G							
Clubiney			В							
			Т							
Standards and References	English, S., Townsville, GCRMN (20	Wilkinson, C., Australia. Aust 18a). GCRMN I	and Ba ralian I mplem	ker, V. (199 nstitute of N entation and	97). Survey Manual for Tropical Marine Resources. Marine Science. d Governance Plan. International Coral Reef Initiative					
	(ICRI).	,								
	GCRMN (20	18b). GCRMN 1	Technic	al Note. Inte	ernational Coral Reef Initiative (ICRI).					
	Obura DO, Managemer	et al., (2019) C at. Front. Mar	Coral Re	ef Monitorir	ng, Reef Assessment Technologies, and Ecosystem-Based					
	See the FO	V Specification	Sheet f	for more det	tails and references (www.goosocean.org/eov)					

Terrestrial ECVs

7. HYDROLOGY

7.1 ECV: Groundwater

7.1.1 ECV Product: Groundwater Storage Change

Name	Groundwater Storage Change								
Definition	The volumetric loss or gain of groundwater between two times period.								
Unit	km ³ y ⁻¹ or mm y ⁻¹								
Note	Ground water storage change is monitored at large spatial scales by satellite gravimetry. To isolate groundwater storage change from the total mass variations observed by satellite gravimetry, all other mass changes in the Earth system need to be subtracted by complementary observations or models.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km	Length/width of area that can be	G	≤ 100	depends on size of aquifer, hydrogeological characteristics, and type of application. 100 km is defined as a goal/target value by ref#1				
		resolved	В						
			т	200-300	horizontal resolution of GRACE water storage data, depending on product, signal strength, geographical location and time scale (ref #1, #2, #3)				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	month	time	G	0.5	Requirement for the analysis of the groundwater response to, e.g., recharge events or changes in (human) withdrawals.				
			В	1					
			Т	3	Seasonal, for assessing, e.g., the climatology of groundwater storage variations and long-term variations / trends.				
Timeliness	month	time	G	<1	Near-real time. Requirement for risk management (droughts), short-term forecasts				
			В	1	Requirement for, e.g., seasonal forecasts				
			Т	12	Annually. Minimum requirement to assess long- term storage variations				
Required Measuremen t Uncertainty (2-sigma)	mm y ⁻¹	mm y ⁻¹ Change in water storage in water equivalents (volume per area) between two time periods	G	1	Goal value to allow for a much larger number of aquifers or river basins of smaller size to be monitored than for threshold value (ref #1), or for detecting more subtle rates of groundwater storage change. Depending on the time scale of application (e.g., for the assessment of monthly anomalies or long-term trends), the required measurement uncertainties may vary. It should be noted that the measurement uncertainty based on satellite gravimetry varies largely and in a non-linear way with spatial resolution, i.e., it is given as 0.05, 1, 5, 50 mm/year for 400, 200, 150, 100 km spatial resolution (ref #1). Additional uncertainty is added by isolating groundwater storage from total mass changes observed by satellite gravimetry.				
			В						
		Т	10	Expert judgement, based on long-term groundwater trends as observed with GRACE for large aquifers (\geq 50000 km ²) (ref #2, #4), given that these observations already provided valuable information on the status of large aquifers. Depending on the time scale of application (e.g., for the assessment of monthly anomalies or long- term trends), the required measurement uncertainties may vary.					
Stability	mm y ⁻¹		G	1	Based on subtle expected long-term groundwater trends				
			В						

	т 10	Based on expected long-term groundwater trends as observed with GRACE for large aquifers (\geq 50000 km ²) (ref #2, #4)							
Standards and References	#1 Pail, R., Bingham, R., Braitenberg, Longuevergne, L., Panet, I., Wouters, for Observing Global Mass Transport t Geophysics, 36, 743-772, 10.1007/s1	, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., B., and the IUGG Expert Panel (2015): Science and User Needs to Understand Global Change and to Benefit Society. Surveys in 0712-015-9348-9.							
	#2 Frappart, F., and Ramillien, G. (2018): Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sensing, 10, 10.3390/rs10060829.								
	#3 Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., and Lo, M. H. (2018): Emerging trends in global freshwater availability, Nature, 557, 650-+, 10.1038/s41586-018-0123-1.								
	#4 Chen, J. L., Famiglietti, J. S., Scar Changes: Present Status from GRACE 10.1007/s10712-015-9332-4.	lon, B. R., and Rodell, M. (2016): Groundwater Storage Observations. Surveys in Geophysics, 37, 397-417,							

7.1.2 ECV Product: Groundwater Level

Name	Groundwater Level								
Definition	The level	(depth or e	levatio	on) of the water t	table, the upper surface of the saturated portion of the				
	soil or be	drock.							
Unit	m								
Note	Groundw	ater levels a	re me	asured in monito	pring wells. The measurements are expressed in m (below				
	ground s	urface or ab	ove se	a level, dependir	ng on the reference system).				
Thomas and a d	L lus its	Matria		Requirer	Netes				
Horizontal	number	coatial		Value	Notes Depends on hydrogoology Expert judgment				
Resolution	of wells	density	B	-	Depends on hydrogeology. Expert judgment.				
Resolution	per 100	of wells	D	-	Depends on hydrogeology. Expert judgment.				
	km ²	01 11 01 0	Т	1	Recommended by the U.S. Geological Survey (USGS).				
Vertical			G	-	N/A				
Resolution			В	-					
			T	-					
Temporal	Month	time	G	0.5	Expert judgment				
Resolution			В	1	Expert judgment				
			Т	3	Seasonal (wet/dry). Expert judgment				
Timeliness	v	time	G	2-3 (davs)	Expert judgment. When resources are available, a real-				
	,			- (/-/	time monitoring network with telemetry can be set up,				
					allowing the public to get data immediately. When				
					quality checks are performed, international experience				
			_		shows that data can be released in 2 or 3 days.				
			В	0.5	Expert judgment. International experience shows that				
					when missions have to be carried out to measure				
					to go over all locations measure the levels come back				
					to the office, perform data quality tests and upload the				
					final data in the online database to make it available to				
					the public through official channels.				
			Т	1	Timeliness is directly related to the use of technology to				
					get the data (telemetry vs going to the field to collect				
Doguirod	mm		C	1	the data).				
Measurement	111111		G	T	higher uncertainties may have a significant impact on				
Uncertainty					the estimation of the water table. Also, there are other				
(2-sigma)					parameters that could have a higher impact on the				
					uncertainty of the recording, as ill-defined vertical				
					datums, pumping wells disrupting groundwater flow				
					patterns, inadequate location of the well, inadequate				
			R		length of screen setting, etc.				
			Т	30					
Stability	mm y⁻¹		G	1	A stable trend can be defined as an average monthly				
					change in groundwater levels that is less than a certain				
					Value (e.g. 10 cm), for a series of consecutive years (e.g. 5, 10 or 20 years). A specific number and density of point				
					data are needed depending on the period to be				
					considered. For 5 years trend, 10 or more data points are				
					required, and at least one reading per year for 4 out of				
					the 5 years. For 10 years trend, 20 or more data points				
					are required, and at least one reading from each				
					consecutive two-year period. For 20 years trend, 40 or				
					more data points are required, and at least one reading				
					the one used by the Bureau of Meteorology of Australia				
					which is one of the several methods used around the				
					world to estimate a stable trend in groundwater levels.				
			В						
			Т	10	It is important to notice that each country might have				
					its own threshold value depending on how marked				
					seasonal fluctuations are (depending on precipitation				
					regimen and hydrogeology, among others). The				
					required measurement stability depends largely on the				
					magnitude of the expected groundwater level trellu.				

Standards and References					

7.2 ECV: Lakes

7.2.1 ECV Product: Lake Water Level (LWL)

Name	Lake Water Level (LWL)											
Definition	Lake Water	· Level (LWL)	. Eleva	ation of th	ne free surface of a lake relative to a specified vertical datum.							
Unit	cm											
Note												
	Requirements											
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	m		G	-	In situ observation by a point measurement on gauge							
Resolution			В	-								
			Т	100								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	d		G	1								
Resolution			В	30								
			Т	365	Annual summary in the form of yearbook							
Timeliness	d		G	1	In some case it can be interesting to have near real time lake level changes (in case of extreme events)							
			В	30								
			Т	365	For yearbooks							
Required	cm		G	5								
Measurement			В									
Uncertainty (2-sigma)			Т	10	Allows to use the considered characteristic in global and regional climate models							
Stability	cm		G	1								
	/decade		В									
	,		Т	10	Allows to use the considered characteristic in global and regional climate models							
Standards and References	Technical Regulations, volume III, Hydrology, 2006 edition, WMO-No.49 Guide to Hydrological Practices, sixth edition,2008, WMO-No.168											

7.2.2 ECV Product: Lake Water Extent (LWE)

Name	Lake Water Extent (LWE)										
Definition	Areal exten	Areal extent of the surface of a lake.									
Unit	km ²										
Note	LWE is only relevant the	LWE is only measurable using satellite imagery. For shallow lakes the LWE variable is more relevant than the Lake Water Level to detect climate change signal (Mason et al., 1994).									
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	m		G	10	Using Sentinel-2 missions. Allows to determine small extent variations.						
			В	30	Using Landsat (5,7,8) missions. Still relevant for shallow lakes with high extent potential variations.						
			Т	1000	Useful to partition surface energy fluxes.						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	d	d	G	5	Reasonable for climate change studies. Consistent with possibilities offered by satellite technologies (Sentinel-2 constellation can provide in the best-case images every 5 days). Will allow detecting LWE changes linked to extreme events.						
			В								
			Т	30	For long term evolution of lake extent changes monthly basis is still acceptable and usable. Useful to partition surface energy fluxes.						
Timeliness	d		G	5	To be consistent with temporal resolution and possibilities offered by satellite technologies (Sentinel-2 constellation can provide in the best-case images every 5 days).						
			В								
			Т	365	Climate scale						
Required Measurement	%		G	5	For LWE, the uncertainty relatively to the total surface makes sense.						
Uncertainty			В								
(2-sigma)			Т								
Stability	%		G	5							
	/decade		В								
			T								
Standards and References	Algorithm 1 ESA's CCI (Mason I.M. lake levels	Theoretical B Climate char , Guzkowska and areas to	asis Do nge Ini M.A.J climat	tiative) p , Rapley c change	(ATBD) of LWE (Lake Water Extent) calculation under program. C.G., and Street-Perrot F.A., (1994). The response of e, <i>Climate Change</i> 27, 161-197.						

7.2.3 ECV Product: Lake Surface Water Temperature (LSWT)

Name	Lake Surface Water Temperature (LSWT)										
Definition	Temperatur	e of the lake	surfac	ce.							
Unit	°C	°C									
Note		Desuivemente									
Those wooded	11	Matula	64.3	Requir	ements						
Item needed	Unit	Metric	[1]	value	Notes						
Horizontal Resolution	km		G	0.1							
			В	1							
			Т	2	Using satellite technics						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	h		G	3	To capture diurnal cycles						
Resolution			В	24	Daily						
			Т	240	Currently achievable with satellite observations. Annual summary in the form of yearbook can also provide useful long-timeseries.						
Timeliness	D		G	1							
			В	30							
			Т	365	For yearbooks						
Required	°C		G	0.1							
Measurement			В	0.3							
(2-sigma)			Т	0.6							
Stability	°C		G	0.1							
	/ decade		В								
			Т	0.25							
Standards and References	Technical R	egulations, v	olume	III, Hydro	logy, 2006 edition, WMO-No.49.						

7.2.4 ECV Product: Lake Ice Cover (LIC)

Name	Lake Ice Cover (LIC)									
Definition	Area of lake covered by ice.									
Unit	km ²	km ²								
Note	Based o spatially trends in limited a Lake-wid during ti period; ice year For lake	Based on lake-wide satellite observations. In situ observations of ice cover can be temporally and spatially consistent, and therefore be useful for climate monitoring, but capture variations and trends in ice cover that are spatially limited (i.e. not lake-wide but rather representative of some limited area observable from lake shore). Lake-wide ice phenology can be derived from LIC (freeze onset to complete freeze over (CFO) dates during the freeze-up period; melt onset to water clear of ice (WCI) dates during the break-up period; and ice cover duration derived from number of days between CFO and WCI dates over an ice year) (Duguay et al., 2015). For lakes that do not form a complete ice cover every year or in some years (e.g. Laurentian								
	indicator that do	r that can be d not completely	erived lose t	; similarly heir ice c	y minimum ice extent can be derived for High Arctic lakes over in summer.					
				Rea	uirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	m		G	50	Smaller water bodies as well as due to increased availability of synthetic aperture radar (SAR) and optical data at resolutions \leq 50 m (e.g. Wang et al., 2018)					
			В	100	Small water bodies (lakes, ponds) can be observed					
			Т	1000	Medium to large sized water bodies as demonstrated through ESA Lakes_cci					
Vertical			G	-	N/A					
Resolution	n 🛛		В	-						
			Т	-						
Temporal Resolution	d		G	< 1	Detection of interannual variability and decadal shifts in ice cover and for improving ice, weather forecasting and climate models.					
			В	1	Allows daily observations under variable cloud cover from optical satellite data					
			Т	3-7	Useful for contrasting extreme ice years, numerical weather forecasting, and assessing lake models used as parameterization schemes in climate models.					
Timeliness	d		G	1	In support of ice forecasting systems (e.g. NOAA's Great Lakes Coastal Forecasting System, GLCFS).					
			В							
			Т	365	To support annual climate reporting					
Required	%		G	1						
Measurement			В	10						
(2-sigma)			I	10						
Stability	%		G	0.1						
			В							
Observation of	ATOD		T	1						
Standards	AIBD ar	IG URD OF ESA	Lakes							
References	Duguay, ice. In R pp. 273-	C.R., M. Bern Cemote Sensing -306.	ier, Y. g of the	Gauthier e <i>Cryospl</i>	, and A. Kouraev, 2015. Remote sensing of lake and river <i>here</i> , Edited by M. Tedesco. Wiley-Blackwell (Oxford, UK),					
	Wang, J classifica 10(11),	., C.R. Duguay ation of lake ic 1727; https://	r, and e cove doi.or	D.A. Clau r using d g/10.339	Isi, V. Pinard, and S.E.L. Howell, 2018. Semi-automated ual polarization RADARSAT-2 imagery. <i>Remote Sensing</i> , 0/rs10111727.					

7.2.5 ECV Product: Lake Ice Thickness (LIT)

Name	Lake Ice Thickness (LIT)								
Definition	Thickness of ice on a lake.								
Unit	cm								
Note	LIT measurements are largely based on in situ observational networks. Satellite-based retrieval algorithms are under development (research stage), not operational yet. On-ice snow depth measurements are also useful for both climate monitoring as well as for assessing and improving lake models.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	m		G	50	From synthetic aperture radar (SAR)				
Resolution			В	1000					
			Т	10000	From radar altimetry and passive microwave data (Kang et al., 2014)				
Vertical			G	-	N/A				
Resolution			в	_					
			Т	_					
Temporal	d		G	1	From satellite observations				
Resolution			В	30					
			Т	365	Annual summary of in situ measurements from yearbooks				
Timeliness	d		G	1	Using satellite telecommunication systems for in situ measurements; also daily from satellites for numerical models such as NOAA's Great Lakes Coastal Forecasting System (GLCFS)				
			В	30					
			Т	365	To support annual climate reporting				
Required	cm		G	1	Achievable with in situ measurements				
Measurement			В	10	Achievable from satellite measurements				
(2-sigma)			Т	15					
Stability	cm		G	1					
			В						
			Т	10					
Standards and References	Nationa Kang, I	al standards. <k., c.="" dugua<br="" r.="">m lakes from AMS</k.,>	ay, J. L SR-E bi	.emmetyi riahtness	nen, and Y. Gel, 2014. Estimation of ice thickness on large temperature measurements. <i>Remote Sensing of</i>				
	Enviror	nment, 150: 1-19	http:/	/dx.doi.c	org/10.1016/j.rse.2014.04.016.				

Name	Lake Water Leaving Reflectance									
Definition	Water-lea visible to angles.	visible to near infrared and up to shortwave infrared, fully normalized for viewing and solar incident angles.								
Unit	dimensio	dimensionless								
Note										
				Req	uirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	m		G	10	Small rivers and water bodies can be observed					
Resolution			В	100	Water bodies included with resolution <300m, as demonstrated through Copernicus Global Land Service					
			Т	1000	Medium to large sized water bodies (up to 50% of global inland water surface area), as demonstrated through ESA Lakes_cci					
Vertical			G	-	N/A					
Resolution			В	-						
			I	-						
Temporal	d		G	<1	At equator. Allows daily observations under variable.					
Resolution			В	1	At equator. Decade-scale shifts in biological components become detectable in individual water bodies.					
			Т	3-30	At equator. Decade-scale shifts in biological components become detectable within global lake biomes.					
Timeliness	d		G	1	Episodic events can be detected in near real-time					
			В	30	Satellite observations supplied with reliable meteorological ancillary data					
			т	365	Annual extension of existing data records based on measurements supplied with reliable meteorological records					
Required Measurement Uncertainty (2-sigma)	%		G	10	At peak reflectance amplitude. Expected to allow derived water column properties to be estimated within 0.1 mg m ⁻³ chlorophyll-a and 1 g m ⁻³ suspended matter or 1 NTU. See ESA Lakes_cci URD. Impact of observation uncertainty will vary with lake type (shape of reflectance spectrum).					
			В	20	At peak reflectance amplitude					
			Т	30	At peak reflectance amplitude. A threshold cannot be clearly defined for all optical water types and lake morphologies. A larger number of observations (large lakes) may compensate for increased per-observation uncertainty.					
Stability	%		G	0.1	For in situ fiducial reference observations.					
	/decade		В	0.5						
			Т	1	Equates to 0.0001/decade for LWLR, 0.1 mg m ⁻³ per decade for chlorophyll-a and 0.1 g m ⁻³ for suspended matter or turbidity.					
Standards	ATBD and	URD of FSA	Lakes	cci						
and References		I OND OF LOA	Lukes							

7.2.6 ECV Product: Lake Water-Leaving Reflectance

7.3 ECV: River Discharge

7.3.1 ECV Product: River Discharge

Name	River Discharge											
Definition	River Dis	charge is de	efined	as the volu	me of water passing a measuring point or gauging station in a							
	river in a	given time										
Unit	m³ s⁻¹											
Note	For static	n calibratio	n both	, the flow	velocity and the cross-sectional area has to be measured a few							
	times a y	ear. River D	Dischar	ge measur	rements have essential direct applications for water							
	managen	nent and re	lated s	ervices, in	cluding flood protection. They are needed in the longer term to							
	help iden	tify and ada	apt to s	some of the	e most significant potential effects of climate change. The flow							
	salinity	salinity, and changes in flow may thereby influence the thermohaline circulation.										
	For clima	For climate applications a minimum number of 600 gauging stations globally would be peeded to										
	capture t	he freshwat	er infl	ux from ma	aior rivers to the oceans (which in turn has an impact on ocean							
	temperat	ure and sal	inity w	hich in tur	n has impacts on ocean currents and weather systems).							
	A minimu	um of 4000	gaugir	ng stations	would be required, in addition to global and regional							
	hydrologi	ical data, fo	r deriv	ing change	es in rainfall distribution and intensity, and determine climate							
	signals in	least anthr	opoge	nic impact	ed basins.							
				Req	Juirements							
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal			G	-	N/A. In situ observation by a point measurement on gauge.							
Resolution			В	-								
			Т	-								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	h		G	1	Hourly. Required to monitor single events and for							
Resolution			_		assessment of extreme events.							
			В	24	Daily. Suitable to determine general discharge patterns							
			т	720	AL REGIONAL AND GIODAL SCALES							
				720	terrestrial, oceanographic and atmospheric systems							
Timeliness	month		G	1 (day)	Daily. For high resolution studies and for preparedness,							
					mitigation during short term events							
			B	1	Monthly. Regional forecasting and modelling							
			1	12	Yearly. For climatology the provision of monthly data within one year after data collection is necessary.							
Required	%		G	5	Improved measurement techniques and sufficient							
Measurement			-	-	resources							
Uncertainty			В	10								
(2-sigma)			Т	15	Discharge measurements are affected by a number of							
					changing conditions and uncertainties due to complex							
					calibration needs such as river cross section flow							
					weed growth lice conditions							
Stability	m y⁻¹	Maxim	G	0.01	For high resolution climatology, necessary to validate							
	/ decade	um			discharge variability and extremes.							
		drift	B	0.05								
		over referen	Т	0.1	For climatology							
		ce										
		period										
Standards		hnical Requ	Ilation	s of Hydrol	ogy (WMO-No 49) and Guide to hydrological practices							
and	(WMO- N	o.168)	nacion	5 of flydror								
References	ISO 1100)-1 (1996)	Measur	ement of I	iquid flow in open channels-Part I: Establishment and							
	operation	of a gaugi	ng stat	tion								
	ISO 748	(1997) Mea	surem	ent of liqui	id flow in open channels-Velocity area methods							
	WMO (W	MO-519) Ma	anual o	n stream	gauging Volume I-Fieldwork and Volume II-Computation							
	of discha	rge		ou cunt y								
	ISO Tech	nical Comm	ittee 1	13 is deali	ing with all standards related to Hydrometry							
	ISO/TS 2	4154 (2005	5) The	principles	of operation, construction, maintenance and application							
	of acoust	ic Doppler o	urrent	profilers ((ADCP)							
Name	Water Level											
--------------------------------	--	---	--------	--	---	--	--	--	--	--		
Definition	Water L	evel is the ele	vation	of the wat	er surface of a river (or a lake, reservoir) regarding a							
	referenc	ce (the ellipsoi	d).									
Unit	m											
Note												
	Requirements											
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal Resolution	m		G	<20 20-50	In addition to global and regional hydrological data, measurement of least anthropogenic impacted basins to derive changes in rainfall distribution, intensity and determine climate signals. Measurement of changes in seasonal level patterns							
			т	>50	at regional level.							
Vertical			C		NI/A							
Resolution			B	-	N/A							
Resolution			т	_								
Temporal Resolution	h		G	1	Hourly. Required to monitor single events and for assessment of extreme events							
		В	24	Daily. Suitable to determine general river/lakes patterns at regional and global scales								
			Т	720	Monthly. Suitable to support climate related modelling of terrestrial, oceanographic and atmospheric systems							
Timeliness	month		G	1 (day)	Daily. For high resolution studies and for preparedness, mitigation during short term events							
			В	1	Monthly. Regional forecasting and modelling							
			Т	12	Yearly. For climatology the provision of monthly data within one year after data collection is necessary							
Required	cm		G	10	From in situ observations							
Measurement			В									
Uncertainty (2-sigma)			т	>10	From satellite observations							
Stability	m y ⁻¹ / decade	Maximu m drift	G	0.01	For high resolution climatology and necessary to validate variability and extremes							
		over	В									
		reference period	Т	0.05	For climatology							
Standards and References	WMO Te (WMO- ISO 110 operatio ISO 748 WMO (V of disch ISO Tec ISO/TS of acous	 WMO Technical Regulations of Hydrology (WMO-No.49) and Guide to hydrological practices (WMO- No.168) ISO 1100-1 (1996) Measurement of liquid flow in open channels-Part I: Establishment and operation of a gauging station ISO 748 (1997) Measurement of liquid flow in open channels-Velocity area methods WMO (WMO-519) Manual on stream gauging Volume I-Fieldwork and Volume II-Computation of discharge ISO Technical Committee 113 is dealing with all standards related to Hydrometry ISO/TS 24154 (2005) The principles of operation, construction, maintenance and application 										

7.3.2 ECV Product: Water Level

7.4 ECV: Soil moisture

7.4.1 ECV Product: Surface Soil Moisture

Name	Surface Soil Moisture								
Definition	Soil Moistu	ire refers to	the av	verage wa	ater content in the soil, which can be expressed in				
	volumetric	, gravimetri	c or re	lative (e.	g. degree of saturation) units. Surface Soil Moisture is				
	sometimes	s referred to	as top	soil mois	ture, surface wetness, surface humidity.				
Unit	The depth of the tenmost soil layer is often only qualitatively defined as the actual consists don'the								
Note	varies with measurement technique, water content, and soil properties and usually cannot be specified with any accuracy.								
	All units ca porosity et	All units can be inter-converted given the availability of soil property information (bulk density, porosity etc.), yet the use of the volumetric soil moisture content as the standard measurement unit							
	13 cheodra	gcu.		Pog	uiromonto				
Itom needed	Unit	Motric	F11	Value	Notes				
Horizontal	km	Metric	G	1	Notes				
Resolution	, , , , , , , , , , , , , , , , , , ,		0	-	place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.).				
			В	10	Many climate and earth system models are moving to a grid size of 10 km or finer.				
			Т	50	This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.				
Vertical			G	-	N/A. There is no proper vertical resolution as the surface is a				
Resolution			В	-	single layer. However, for modelling bare soil evaporation				
			Т	-	and LST a very thin skin layer is required (e.g. Dorigo et al., 2017; ECMWF).				
Temporal Resolution	h	G	6	Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface; Needed to depict the interplay between soil moisture, precipitation, vegetation activity, and evaporation.					
			В	24	Needed for closing water balance at daily scales.				
			Т	48	Important land-atmospheric processes are missed, but drying and wetting trends can be depicted.				
Timeliness	h		G	3	For climate communication and improved preparedness.				
			В	6	I o support the assessment of on-going extreme events (droughts, extreme wetness)				
			т	48	For assessments and re-analysis.				
Required Measurement Uncertainty	m ³ m ⁻³	Unbiased root mean	G	0.03	More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover.				
(1 sigma)		square error	В	0.04	Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner et al. 2017).				
			Т	0.08	This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.				
Stability	m ³ m ⁻³		G	0.005	This value still lacks justification in the scientific literature				
	/ decade		B	0.01	and needs to be critically assessed.				
			р Т	0.01					
			I	0.02	As above				
Standards and References	Wagner, W Dorigo (20 28(4), 13-	7., T.J. Jacks 17) Fourth 1 14.	son, J.: Satellit	J. Qu, R. e Soil Mo	de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. isture Validation and Application Workshop, GEWEX News,				
	Gruber, A. Crow, W., C., Muñoz- Wigneron, are (the) e https://lpv	, De Lannoy Dorigo, W., Sabater, J., JP. and W errors? Remo s.gsfc.nasa	, G., A Drape Peng, agner, ote Ser gov/Pl	lbergel, (r, C., Hirs J., Reich W., 2020 nsing of E	C., Al-Yaari, A., Brocca, L., Calvet, JC., Colliander, A., Cosh, M., schi, M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, le, R., Richaume, P., Rüdiger, C., Scanlon, T., Schalie, R.v.d., 0. Validation practices for satellite soil moisture retrievals: What environment, 244: 111806. 10.1016/j.rse.2020.111806. _SM_LPV_Protocol_V1_20201027_final.pdf				

7.4.2 ECV Product: Freeze/Thaw

Name	Freeze/Thaw										
Definition	Flag indica	Flag indicating whether the land surface is frozen or not.									
Unit	Unitless										
Note	Freeze/Thaw is subsidiary variable of the ECV soil moisture. It is needed because most measurement techniques do not allow to measure soil moisture when the ground is frozen. Also, land-surface processes fundamentally change when the soil is frozen. Instead of binary values (e.g. thawed = 0 and frozen = 1) probabilities (i.e. probability that the soil is frozen) may be used.										
				kequirer	nents						
Item needed	Unit	Metric Cize of guid		Value	Notes						
Resolution	KIII	cell	G	10	resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.).						
			Б	10	earth system models are moving to a grid size of 10 km or finer.						
			Т	50	Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.						
Vertical			G	-	N/A						
Resolution			В	-							
			T	-							
Temporal Resolution	emporal h esolution		G	6	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface, and to depict the interplay between soil moisture, precipitation and evaporation						
			В	24	Same as for Surface Soil Moisture: Needed for closing water balance at daily scales						
			Т	48	Same as for Surface Soil Moisture: Important land- atmospheric processes are missed, but drying and wetting trends can be depicted						
Timeliness	h		G	3	Same as for Surface Soil Moisture: For climate						
			В	6	Same as for Surface Soil Moisture: To support the assessment of on-going extreme events (droughts, extreme wetness)						
			Т	48	Same as for Surface Soil Moisture: For assessments and re-analysis						
Required Measurement Uncertainty	%	Overall classification accuracy (as this is a	G	98	Same as for Surface Soil Moisture: More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover.						
	fia va an si <u>c</u>	flag, this variable has an accuracy and not a sigma)	В	95	Same as for Surface Soil Moisture: Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner et al. 2017).						
			Т	90	Same as for Surface Soil Moisture: This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.						
Stability											

Standards and References	Required Measurement Uncertainty (2-sigma): Confusion matrices should be computed for different periods of the year. In particular, the transition periods from frozen to thawed conditions are most critical for assessing the accuracy of the freeze/thaw estimates.
	Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14.
	Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, JC., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C., Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C., Scanlon, T., Schalie, R.v.d., Wigneron, JP. and Wagner, W., 2020. Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244: 111806. 10.1016/j.rse.2020.111806.
	https://lpvs.gsfc.nasa.gov/PDF/CEOS_SM_LPV_Protocol_V1_20201027_final.pdf

7.4.3 ECV Product: Surface Inundation

Name	Surface Inundation								
Definition	Flag indicating whether the land surface is inundated or not.								
Unit	Unitless								
Note	Also, land-surface processes fundamentally change when the soil is inundated. Instead of binary values probabilities (i.e. probability that the soil is inundated) may be used.								
				Require	ements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km	Size of grid cell	G	1	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.).				
			В	10	Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km or finer.				
			Т	50	Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	h		G	6	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface, and to depict the interplay between soil moisture, precipitation and evaporation.				
			В	24	Same as for Surface Soil Moisture: Needed for closing water balance at daily scales.				
			Т	48	Same as for Surface Soil Moisture: Important land- atmospheric processes are missed, but drying and wetting trends can be depicted.				
Timeliness	h		G	3	Same as for Surface Soil Moisture: For climate communication and improved preparedness.				
			В	6	Same as for Surface Soil Moisture: To support the assessment of on-going extreme events (droughts, extreme wetness).				
			Т	48	Same as for Surface Soil Moisture: For assessments and re-analysis.				
Required Measurement Uncertainty	%	Overall classificati on accuracy	G	98	Same as for Surface Soil Moisture: More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover.				
	(as this is a flag, this variable has an	(as this is a flag, this variable has an	В	95	Same as for Surface Soil Moisture: Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner et al. 2017).				
		and not a sigma)	Т	90	Same as for Surface Soil Moisture: This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.				
Stability									
Standards	Wagner, Dorigo (2 28(4), 1 Gruber, M., Crow Montzka, R.v.d., W retrieval	 Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14. Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, JC., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C., Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C., Scanlon, T., Schalie, R.v.d., Wigneron, JP. and Wagner, W., 2020. Validation practices for satellite soil moisture 							
	retrievals: What are (the) errors? Remote Sensing of Environment, 244: 111806. 10.1016/j.rse.2020.111806.								

7.4.4 ECV Product: Root Zone Soil Moisture

Name	Root Zone Soil Moisture								
Definition	The Root-Zone Soil Moisture content refers to the average water content in the root-zone.								
Unit Note	m ³ m ⁻³ There is no agreed definition of the depth of the root-zone layer, as the actual root-zone of plants varies according to vegetation type, ground water table, and substrate. Considering that many in situ networks have sensors up to a depth of about 50 cm, a first definition of the root-zone layer may be 0-50 cm or similar ranges, although most land surface and vegetation models adopt a root zone of 100 cm or deeper (e.g. Muñoz-Sabater, 2021). Measuring the water content in the root-zone is either not possible (e.g. when using microwave satellites) or costly (e.g. using in situ measurements). Hence, the root-zone soil moisture content has initially not been considered by GCOS. However, as most applications require information about the soil moisture content in deeper soil layers, the root-zone soil moisture content was added to the ECV soil moisture in the GCOS 2016 Implementation Plan. Because it is relatively new variable, all specifications given in this table								
	ficed to E	ic regulated wi		Doguin					
Itom needed	Unit	Motric	64.3	Value	Notes				
Horizontal Resolution	km	Size of grid cell	G	1	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.).				
			В	10	Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km or finer.				
			Т	50	Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.				
Vertical	cm		G	10					
Resolution			В	50					
			Т	100					
Temporal Resolution	emporal h esolution		G	6	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface; Needed to depict the interplay between soil moisture, precipitation and evaporation.				
			В	24	Same as for Surface Soil Moisture: Needed for closing water balance at daily scales.				
			Т	48	Same as for Surface Soil Moisture: Important land- atmospheric processes are missed, but drying and wetting trends can be depicted.				
Timeliness	month		G	0.25	Weekly. Same as for Surface Soil Moisture: For climate communication and improved preparedness				
			В	1	Monthly. Same as for Surface Soil Moisture: To support the assessment of on-going extreme events (droughts, extreme wetness)				
			Т	12	Yearly. Same as for Surface Soil Moisture: for assessments and re-analysis				
Required Measurement Uncertainty	Required Measurement Uncertaintym³ m-3Unbiased root mean square error	Unbiased root mean square error	G	0.03	Same as for Surface Soil Moisture: More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover.				
			В	0.04	Same as for Surface Soil Moisture: Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner et al. 2017).				
			Т	0.08	Same as for Surface Soil Moisture: This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.				
Stability	m³ m⁻³		G	0.005	Same as for Surface Soil Moisture: This value still lacks justification in the scientific literature and needs to be critically assessed.				

		В	0.01	As above			
		Т	0.02	As above			
Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14.							
Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, JC., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C., Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C., Scanlon, T., Schalie, R.v.d., Wigneron, JP. and Wagner, W., 2020. Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244: 111806, 10, 1016/j rse 2020, 111806							
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349-4383.							
https://lp	ovs.gsfc.nasa.g	jov/PDI	F/CEOS_SN	1_LPV_Protocol_V1_20201027_final.pdf			

7.5 ECV: Terrestrial Water Storage (TWS)⁴

7.5.1 ECV Product: Terrestrial Water Storage Anomaly

Nome	Torrestrial Water Storage Anomaly							
Name	Terreschar water Storage Anomaly							
Definition	Two is the total amount of water stored in all continental storage compartments (ice caps, glaciers,							
	snow co	over, soil r	noistu	re, groun	dwater, surface water bodies, water in biomass). The change of			
	TWS ov	er time ba	alances	s the bud	get of the water fluxes precipitation, evapotranspiration and			
	runoff, i.e., it closes the continental water balance.							
Unit	km ³ or mm water equivalent (kg/m ²)							
Note	Measuri	ng TWS is	possi	ble by sa	tellite and terrestrial gravimetry in relative terms only, not in			
	absolute	e values. ⁻	Fhus, ⁻	TWS is ai	ven as the deviation relative to a long-term mean (TWS			
					Requirements			
Item needed	Unit	Motric	F11	Value	Notes			
Herizontal	Unit	Methe		1 1	Deceive the tenegraphy, and land cover driven notterns			
Horizontal Decelution			G	T	Resolve the topography- and faile cover-univen patterns			
Resolution	km			10	of landscape-scale water storage dynamics, e.g., ref #2			
			В	10	Many climate and Earth system models are moving to a grid			
					size of 10 km or finer. Often a relevant local to regional water			
			_		management scale			
			1	200	Comprehensive continental-scale patterns of water			
					storage changes, e.g., ref #1			
Vertical			G	-	N/A, as total water storage represents an integrative value in			
Resolution			В	-	the vertical, overall storage compartments and depths.			
			Т	-				
Temporal			G	1	To resolve water storage changes caused by heavy			
Resolution	d				precipitation events and occurring during flood events			
			В					
			Т	30	To resolve major seasonal, intra- and inter-annual dynamics			
					as well as long-term trends of water storage			
Timeliness			G	1	Required latency for warning for and managing of extreme			
	д				events, in particular floods, e.g. ref #3			
	u		в		, , , , , ,			
			т	60-00	Current latency of GRACE-EO based TWS products e.g. ref #4			
Pequired			G	1	Order of magnitude required to resolve TWS offect of daily			
Maacuramont			9	1	ovapotranspiration			
Uncortainty	mm	mm	D					
(2-sigma)			т	20	Order of magnitude to receive monthly TWC variations			
(2-Sigilia)				20	Chability peeded to detect subtle long term TWC trends sourced			
Stability			G	<1	Stability needed to detect subtle long-term TwS trends caused			
	mm y⁻¹		_		by global change and anthropogenic impacts on the water cycle			
			В	_				
			1	<5	Stability needed to resolve major long-term TWS changes, e.g.,			
					related to melting ice sheets, groundwater depletion			
Standards	Pail, R.,	Bingham	, R., B	raitenber	g, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E.,			
and	Longue	/ergne, L.	, Pane	t, Ι., Woι	Iters, B., Panel, I.E. (2015): Science and User Needs for Observing			
References	Global N	lass Trans	sport t	o Unders	tand Global Change and to Benefit Society. Surveys in Geophysics			
	36, 743	-772.						
	Güntner	· A Reic	h M	Mikolai I	M Creutzfeldt B Schroeder S Wziontek H (2017) [,] Landscape-			
	scale wa	ater balan	ce mo	nitorina v	with an iGray superconducting gravimeter in a field enclosure			
	Hvdrolo	av and Ea	rth Sv	stem Sci	ences, 21(6), 3167-3182, doi: 10.5194/hess-21-3167-2017.			
	längi A	Weigelt	M F	lechtner	E Güntner & Mayer-Gürr T Martinic S Bruinsma S Eluny			
	Jayyı, A	aoano S	Stoff	on H M	avor II. Joan V. Sušnik A. Grabel A. Arnold D. Cann-			
	Cuthour	gogne, S.	, Sten		Chan O yan Dam T. Crubar C. Derenat L. Couveleouw R.			
	Kupe A	Vlingor		, LI, L., C	M Riancalo D Zwonznor H Randikova T Shahanloui A			
	(2010)	., Kiiliyer,		inome, J	-M., Diditicale, K., Zweitzher, H., Dahuikova, L., Shabahiour, A.			
	(2019):	Europear		nty Servic	e for Improved Emergency Management (EGSIEM) - from concept			
			1. Geo	privsical.	Journal International, 218(3), 1572-1590, 001:			
	10.1093	yyj/gg22	50.					
	Peter, H	I., Meyer,	U., La	sser, M.,	Jäggi, A. (2022): COST-G gravity field models for precise orbit			
	determi	nation of	Low Ea	arth Orbit	ing Satellites. Advances in Space Research, 69(12), 4155-4168,			
	doi: 10.	1016/j.as	r.2022	2.04.005				

 $^{^{\}rm 4}$ This is a new ECV approved by GCOS Steering Committee in 2020.

8. Cryosphere⁵

8.1 ECV: Snow

8.1.1 ECV Product: Area Covered by Snow

Name	Area Covered by Snow								
Definition	The area of snow-covered land, land ice, or firn.								
Unit	km ²								
Note	Area covered by snow can be determined from satellite observations and modeled. Unlike SWE and HS, area covered by snow cannot be calculated directly from in situ point measurements. Area can be calculated from binary and fractional products including, but not limited to, snow_area_fraction_viewable_from_above, surface_snow_area_fraction, and surface_snow_binary_mask. Temporal frequency requirements are for climate monitoring and do not preclude more frequent observations. Horizontal resolution requirements are for climate monitoring and do not preclude finer spatial resolutions. Due to the greater depth and higher variability of snow in mountain environments, we specify separate horizontal resolution and uncertainty values for mountain and non-mountain environments. Additionally, breakthrough horizontal resolutions are specified for specific use cases [1].								
				Requi	rements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	Horizontal Resolution km Size of grid cell	G	0.1	Non-mountain: to capture local and regional scale spatial variability in area covered by snow; watershed scale hydro-climatology [2].					
				0.01	Mountain: to capture local-scale spatial variability; process studies; mountain ecological applications [3].				
			В	0.5	Non-mountain: status and trends at regional to global scales [2, 4, 5].				
				0.1	Mountain: to describe the spatial heterogeneity in mountain snow cover induced by solar radiation, aspect and slope; to monitor response of mountain snow cover area to climate change at local to regional scales [2, 3].				
				0.01	To monitor status and trends in ephemeral and marginal snow zones [6] (non-mountain). Ecological applications [3].				
			Т	1	Non-mountain: status and trends at regional to hemispheric scales [2, 4, 5]; evaluation of operational snow models; assimilation of snow cover information in climate, land surface and atmospheric models, reanalyses, and in large-scale hydrological models [7].				
				0.5	Mountain: status and trends of mountain snow cover area at regional to hemispheric scales [2, 4, 5, 8]; basin-scale representation of area covered by snow in hydrological models [7].				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution		Frequency of measurement	G	3h	To monitor and assess risk in a changing climate; to monitor accumulation and melt processes and to capture the timing of snowmelt; hydrological modelling in support of extreme events; marginal snow [6].				

⁵ GCOS and GCW will be working together to harmonize the requirements for the cryosphere ECVs during the lifetime of this Implementation Plan.

			В	Daily Monthly	To capture long-term trends in area covered by snow and derived variables (snow cover duration, date of snow on/off, snow line elevation), especially during the accumulation and ablation seasons and in ephemeral snow zones; phenological studies (vegetation); snow- albedo feedbacks; to enable inference of first-order effects of snow on Earth systems (hydrologic, atmospheric and ecosystem processes) [2, 3, 4, 5, 6, 9]. Climate applications - climate indicators and assessments; model initialization and evaluation [5]
Timolinoss			G	Daily	Evaluation of soasonal forecasts, undate of reanalyses
Timemess			В	Weekly	Update of monthly climate indicators, climate assessments – seasonal bulletins and status reports; evaluation of seasonal forecasts.
			Т	Annual	Climate assessments; scientific research; model initialization (e.g. seasonal prediction); HS and SWE reconstruction [4].
Required	%		G	5	[2]
Uncertainty			В	10	[2, 4]
(2-sigma) [^]			Т	20	[2, 4]
Stability	%/de		G	1	[9]
	cade		В	5	These values still lack justification in the scientific literature and need to be critically assessed
			т	10	These values still lack justification in the scientific literature and need to be critically assessed.
Standards and References	1: GC ht 2: IG G 3: Ga P. E2 4: De D CC 5: Ma R 4: De C 5: Ma 6: Ló G 8: Bo Ti 3. 9: Na Pl ht 10: C Si O	205–245 (2022) tps://library.wm OS: Cryosphere eneva, Switzerla scoin, S., Luojus (2024) Remote arth Sci,12-2024 rksen, C., Nagle ocument, versior i.enveo.at/docur lines, E., Buanes ulliainen, J., Luoj equirements for tps://doi.org/10 pez-Moreno, J. I. ascoin, S., Desch asis for a Global tps://doi.org/10 rksen, C., Esser CV: Climate Asse rmann, K. J., Br rends from Space tional Academies anet: a decadal a tps://doi.org/10 iCOS–245 (2011 upplemental deta bserving System	The 20 io.int/ii Theme nd, 10 s, K., N sensin , https r T. an a 4.0, I ments/ , A., N us, K., the Sm .5194/ ., Callo hamps- Definit .1016/ y, R., C issmen rown, F e. Nat s of Sc strateg .17226) Syste ails to f	J22 GCOS E durl/4/5811 e Report (20 0 pp., <u>https</u> lagler, T., L g of mounts ://doi.org/J d Schwaize May 2022, f Snow_cci_[agler, T., B Larsen, H. ow and Lan tc-9-1191-3 w, N., McG Berger, C., ion and Exis j.earscirev. Gustafsson, t Report, vo 8. D., Derks Clim Chang iences, Eng y for Earth 5/24938. ematic Obse the satellite mate in Su	 CVS Requirements, World Meteorological Organization, 1. 1.007) WMO/TD-No 1405, World Meteorological Organization, c://stratus.ssec.wisc.edu/iqos/docs/cryos theme report.pdf. ievens, H., Masiokas, M., Jonas, T., Zheng, Z., and de Rosnay, ain snow from space: status and recommendations, Front 10.3389/feart.2024.1381323. r, G. (2022) ESA CCI+ Snow ECV: User Requirements https://snow- D.1_URD_v4.0.pdf. ippus, G., Gustafsson, D., Schiller, C., Metsämäki, S., E., Solberg, R., Diamandi, A., and Wiesmann, A. (2015) User d Ice Services - CryoLand, The Cryosphere, 9(3): 1191-1202, 2015. owan, H., Webb, R., Schwartz, A., Bilish, S., Revuelto, J., and Alonso-González, E. (2024) Marginal Snowpacks: The sting Research Needs, Earth-Sci Rev, 252: 104751, 2024.104751. D., Menegoz, M., and de Rosnay, P. (2024) ESA CCI+ Snow ersion 4.0, January 2024. ineering, and Medicine (2018) Thriving on our changing observation from space. National Academies Press. ervation Requirements for Satellite-based Products for Climate -based component of the Implementation Plan for the Global pport of the UNFCCC, https://library.wmo.int/idurl/4/48411.

^ This refers to the maximum error of omission and commission in snow area [10] within a Hydrological Response Unit (HRU).

8.1.2 ECV Product: Snow Depth

Name	Snow Depth										
Definition	Snow depth (HS) is the vertical distance from the snow surface to a stated reference level, also known as snow height and height of snow [1]. HS is related to snow thickness (DS) - the perpendicular distance from the snow surface to a stated reference level, through the slope angle.										
Unit	m	1 11 11 11		1 12 11							
Note	Snow mease Requi	measurements, and modeled. Requirements specific to snow depth on sea ice are covered in the Sea Ice FCV (4.11.7, GCOS									
	2022)	2022).									
	Tomp		lonest		cr-stanuaru name surrace_snow_trickness.						
	obser finer s	I emporal frequency requirements are for climate monitoring and do not preclude more frequent observations. Horizontal resolution requirements are for climate monitoring and do not preclude finer spatial resolutions.									
	Due te separ enviro [2].	Due to the greater depth and higher variability of snow in mountain environments, we specify separate horizontal resolution and uncertainty values for mountain and non-mountain environments. Additionally, breakthrough horizontal resolutions are specified for specific use cases [21].									
				Req	uirements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km	Size of grid cell	G	0.5	Non-mountain: watershed scale hydro-climatology; insulative properties of snowpack for soil [3].						
				0.1	Mountain: Impact of climate warming on mountain snow depth; processes studies; to describe the spatial heterogeneity in mountain snow depth induced by wind exposure, solar radiation, aspect and slope [3, 4, 5].						
			В	5	Non-mountain: status and trends at regional to continental scales; regional climate model initialization and evaluation.						
				0.25	Mountain: To monitor status and trends at local and regional scales.						
				0.01	To observe snow depth in ephemeral and marginal snow zones [6]. Ecological applications [4]. Process studies, blowing snow [7].						
			Т	25	Non-mountain: status and trends at continental to hemispheric scales [3].						
				0.5	Mountain: status and trends at regional to hemispheric scales; large river catchment monitoring; earth systems model evaluation [3].						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution		Frequence of measure	G	3h	To monitor and assess risk in a changing climate; to monitor HS in marginal snow zones [6].						
			В	Daily	To capture the seasonal evolution of snow depth; to monitor HS in marginal and ephemeral snow zones [6]; to capture long-term trends in HS during the accumulation and ablation seasons [3, 5].						
			т	Monthl y	Climate applications - climate indicators and assessments; model initialization (e.g. seasonal prediction) and evaluation.						
Timeliness		Frequence of measure	G	Daily	Daily Evaluation of seasonal forecasts, update of reanalyses, attribution of extreme events.						
			В	Weekly	Update of monthly climate indicators, climate assessments – climate watch, seasonal bulletins and status reports; evaluation of seasonal forecasts.						
			Т	Annual	Climate assessments; scientific research; model initialization (e.g. climate).						
Required Measurement	m		G	0.05	Non-mountain: Or 5%, whichever is greater [3]; shallow and marginal snow.						
Uncertainty				0.1	Mountain: Or 5% [3], whichever is greater.						
			В	0.1	Non-mountain: Or 10%, whichever is greater [3].						

				0.2	Mountain: Or 10% [3], whichever is greater.
			Т	0.2	Non-mountain: Or 20%, whichever is greater.
				0.4	Mountain: Or 20%, whichever is greater.
Stability	m/De		G	0.01	These values still lack justification in the scientific literature
	cade		В	0.05	and need to be critically assessed.
			Т	0.1	
Standards and References	1: WI M W 2: GC ht 3: IG O ht 4: Ga R r e 5: Na pl ht 6: Ló J. Si 2:	MO-No. 8 (2023) easurement of C 'orld Meteorologi COS-245 (2022) ttps://library.wm OS: Cryosphere rganization, Gen ttps://stratus.sse osnay, P. (2024) commendations tional Academie anet: a decadal ttps://doi.org/10 pez-Moreno, J. I , Gascoin, S., De nowpacks: The E 52: 104751, http) Guid ryospl cal Or The 2 no.int/i Theme eva, S ec.wise s, K., N Remo , Front s of So strate 0.1722 ., Calle eschan Basis fo	e to Instr neric Vari ganizatio 022 GCO durl/4/58 e Report witzerlan edu/igo Nagler, T. te sensin Earth Sc ciences, E gy for Ear 6/24938. bw, N., M nps-Berge or a Globa bi.org/10.	 ruments and Methods of Observation Volume II – ables Chapter 2 Measurement of Snow, 2023 Edition, n, https://library.wmo.int/idurl/4/68660. S ECVs Requirements, World Meteorological Organization, 8111. (2007) WMO/TD-No 1405, World Meteorological d, 100 pp., s/docs/cryos_theme_report.pdf. , Lievens, H., Masiokas, M., Jonas, T., Zheng, Z., and de ig of mountain snow from space: status and ci,12-2024, https://doi.org/10.3389/feart.2024.1381323. Engineering, and Medicine (2018) Thriving on our changing rth observation from space. National Academies Press. IcGowan, H., Webb, R., Schwartz, A., Bilish, S., Revuelto, er, C., and Alonso-González, E. (2024) Marginal al Definition and Existing Research Needs, Earth-Sci Rev, 1016/j.earscirev.2024.104751.
	7: Mo w ht	ott, R., Vionnet, V ind-driven coupli tps://doi.org/10	V., Gri ing pro .3389,	inewald, ocesses, I /feart.20	G. (2018) The seasonal snow cover dynamics: Review on Front. Earth Sci, 6:197, 18.00197.

^ % uncertainty based on a 1m non-mountain snowpack and a 2m mountain snowpack. HS uncertainty linked to SWE uncertainty based on snow density of 200 kg m⁻³.

8.1.3 ECV Product: Snow-Water Equivalent

Name	Snow-Water Equivalent										
Definition	The snow water equivalent (SWE) is the depth of liquid water that would result if the snow cover melted completely, which equates to the snow cover mass per unit area (kg m ⁻²). Also known as water equivalent of snow cover.										
Unit	mm										
Note	SWE can be measured directly in-situ (including airborne), retrieved from satellite data, and modeled. Includes CF-standard names <i>liquid_water_content_of_surface_snow</i> ,										
	surface_snow_amount.										
	Temporal frequency requirements are for climate monitoring and do not preclude more frequent observations. Horizontal resolution requirements are for climate monitoring and do not preclude finer resolutions.										
	Due to the greater depth and higher variability of snow in mountain environments, we specify separate horizontal resolution and uncertainty values for mountain and non-mountain environments. Additionally, breakthrough horizontal resolutions are specified for specific use cases [1].										
				Req	uirements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km	Size of	G	0.5	Non-mountain: watershed-scale hydrology [2, 3, 4].						
Resolution		grid cell		0.1	Mountain: corresponds to the typical length scale of variability of mountain SWE [5]. Small catchment studies, melt and accumulation, process studies [2, 4, 6, 7, 8].						
			В	5	Non-mountain: status and trends at regional to continental scales [6, 9]; regional climate model initialization and evaluation.						
				0.25	Mountain: To monitor status and trends at local and regional scales; mountain hydrological modeling.						
				0.01	To observe SWE in ephemeral and marginal snow zones [10]. Ecological applications [8]; process studies, blowing snow [11].						
			Т	25	Non-mountain: status and trends at continental to hemispheric scales [2, 7, 9, 12]; climate model intercomparison and evaluation (e.g. CMIP); evaluation of large-scale hydrological models [13].						
				0.5	Mountain: status and trends at regional to hemispheric scales; large river catchment monitoring [2, 3].						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution		Frequence of measure	G	3h	To monitor and assess risk in a changing climate; capture accumulation and melt processes; monitor the timing and magnitude of peak SWE; hydrological modelling in support of extreme events; snowpack model evaluation.						
			В	Daily	To capture the seasonal evolution of snow water storage; to capture long-term trends in SWE during the accumulation and ablation seasons [2, 3, 6, 7, 8, 9, 12]						
			Т	Monthly	Climate applications - climate indicators and assessments [9]; model initialization and evaluation; snow-ice albedo feedbacks [6].						
Timeliness			G	Daily	Assimilation in flood forecasts, update of reanalyses, attribution of extreme events.						
			В	Weekly	Update of monthly climate indicators, climate assessments – climate watch, seasonal bulletins and status reports; evaluation of seasonal forecasts.						
			Т	Annual	Climate assessments; scientific research; model initialization (e.g. seasonal prediction) [9].						
Required Measurement	mm		G	10	Non-mountain: Or 10%, whichever is greater [2, 6, 9]; shallow and marginal snow.						
Uncertainty (2-				20	Mountain: Or 10% [2], whichever is greater.						

sigma) [^]			В	20	Non-mountain: Or 20% [2, 9], whichever is greater.
				40	<i>Mountain:</i> Or 20% [2], whichever is greater.
			т	40	Non-mountain: Or 40%, whichever is greater
				80	Mountain: Or 40% whichever is greater
Stability	Mm/		G	1	These values still lack justification in the scientific literature
	deca de		В	5	and need to be critically assessed.
	uc		Т	10	
Standards and Reference s	1: G(0	COS-245 (20 Irganization,)22) T https	he 2022 G ://library.w	COS ECVs Requirements, World Meteorological vmo.int/idurl/4/58111.
	2: IG 0	GOS: Cryosph Organization,	nere T Gene	heme Repo va, Switzer	ort 2007 (2007) WMO/TD-No 1405, World Meteorological rland, 100 pp., inos/docs/cryos, theme, report pdf
	3: Bo C	ormann, K. J over Trends	l., Bro from	own, R. D., Space. Nat	Derksen, C. and Painter, T.H. (2018) Estimating Snow- Clim Change, 8(11): 924–28,
	h 4: Ts P N R R 1	ttps://doi.org ang, L., Dura ., Zhu, J., Jo olin, A., Osm lavari, M., Du eview Article adar Remote 6-3531-2022	g/10. and, N hnsor nanog umont :: Glol e Sens 2.	1038/s415 M., Derksen n, J., King, lu, B., Vuy c, M., Kelly, bal Monitor sing, The C	58-018-0318-3. n, C. Barros, A. P., Kang, DH., Lievens, H., Marshall, H J., Lemmetyinen, J., Sandells, M., Rutter, N., Siqueira, P., ovich, C., Kim, E., Taylor, D., Merkouriadi, I., Brucker, L., , R., Kim, R. S., Liao, TH., Borah, F., and Xu, X. (2022) ring of Snow Water Equivalent Using High-Frequency ryosphere, 16(9): 3531–73, https://doi.org/10.5194/tc-
	5: Bl 7 H	öschl, G. (19 5, https://do YP847>3.0.0	99) S i.org/ CO;2-	caling Issu (10.1002/(8.	tes in Snow Hydrology. Hydrol Process, 13(14-15): 2149- SICI)1099-1085(199910)13:14/15<2149::AID-
	6: Na cl A	ational Acade hanging plan cademies Pre	emies et: a ess. <mark>h</mark>	of Sciences decadal str ttps://doi.o	s, Engineering, and Medicine (2018) Thriving on our rategy for Earth observation from space. National org/10.17226/24938.
	7: Lu b h 0	iojus, K., Fop ased Snow M ttps://www.g 62014.pdf.	opa, N Ionito globsr	I., and Fon ring Strate now.info/do	tana, F. (2014) Perspectives for a European Satellite- gy – A Community White Paper, 25 July 2014, pcs/White_Paper_European_Satellite_Snow_Monitoring_25
	8: Ga d re h	ascoin, S., Lu e Rosnay, P. ecommendat ttps://doi.org	iojus, (202 ions, g/10.	K., Nagler 4) Remote Front Earth 3389/feart	, T., Lievens, H., Masiokas, M., Jonas, T., Zheng, Z., and sensing of mountain snow from space: status and Sci,12-2024, .2024.1381323.
	9: De R C	erksen, C., N equirements ci.enveo.at/d	agler Docu locum	T. and Sch ment, vers ents/Snow	<pre>waizer, G. (2022) ESA CCI+ Snow ECV: User sion 4.0, May 2022, https://snow- y_cci_D1.1_URD_v4.0.pdf.</pre>
	10: L R M E	ópez-Moreno evuelto, J., C larginal Snov arth-Sci Rev,	o, J. I Gasco vpack , 252:	., Callow, N in, S., Deso s: The Bas : 104751, h	N., McGowan, H., Webb, R., Schwartz, A., Bilish, S., champs-Berger, C., and Alonso-González, E. (2024) is for a Global Definition and Existing Research Needs, https://doi.org/10.1016/j.earscirev.2024.104751.
	11: M R h	Mott, R., Vion eview on wir ttps://doi.org	nd-dri g/10.	V., Grünew ven couplir 3389/feart	rald, G. (2018) The seasonal snow cover dynamics: ng processes, Front. Earth Sci, 6:197, .2018.00197.
	12: N S (2 C	Malnes, E., Br ., Pulliainen, 2015) User R ryosphere, 9	uanes J., Lu equir (3): 1	s, A., Nagle Jojus, K., L ements for 191–1202	r, T., Bippus, G., Gustafsson, D., Schiller, C., Metsämäki, arsen, H. E., Solberg, R., Diamandi, A., and Wiesmann, A. the Snow and Land Ice Services – CryoLand, The , https://doi.org/10.5194/tc-9-1191-2015.
	13: [C	Derksen, C., CI+ Snow EC	Esser CV: C	y, R., Gust limate Asse	afsson, D., Menegoz, M., and de Rosnay, P. (2024) ESA essment Report, version 4.0, January 2024.

^ % uncertainty based on a 100 mm non-mountain snowpack and a 200 mm mountain snowpack. SWE uncertainty calculated from HS and density, assuming a density of 200 kg m⁻³.

8.2 ECV: Glaciers

8.2.1 ECV Product: Glacier Area

Name	Glacier Area								
Definition	Inventory of map-projected area covered by glaciers.								
Unit	km ²	km ²							
Note	Glacier of glac charac ice pat	Glacier area is the map-projected size of a glacier in km ² . The product comes as worldwide inventory of glaciers outlines with various related attribute fields (e.g. area, elevation range, glacier characteristics). Typically, a minimum size of 0.01 or 0.02 km ² is applied, to avoid including small ice patches which do not flow and are therefore not glaciers.							
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	m		G	1 20	Spatial resolutions better than 15 m (e.g. the 10 m from Sentinel 2) are preferable as typical characteristics of glacier flow (e.g. crevasses) only become visible at this resolution (Paul et al. 2016). The horizontal resolution of 15-30 m refers to typically used satellite sensors (Landsat and ASTER) to map glaciers.				
			т	100	At coarser resolution the quality of the derived outlines rapidly degrades.				
Vertical			G	_	N/A				
Resolution			В	-					
			T	-					
Temporal Resolution	у		G	1	The temporal sampling "Annual" means that each year the availability of satellite (or aerial) images should be checked to identify the image with the best snow conditions (i.e. snow should not hide the glacier perimeter).				
			В						
			Т	10	Decadal data used to evaluate glacier change in regional scale.				
Timeliness	у		G	1					
			В						
			Т	10	For multi-temporal inventories at decadal resolution, the timeliness of the product availability is not so important.				
Required Measurement Uncertainty	%	Random error of glacier outlines	G	1	Glacier outlines mapped with a resolution of 1 m remote sensing images (take glacier area in average as 1 km^2)				
		produced in dependency of remote	В	5	Glacier outlines mapped with a resolution of 15-30 m remote sensing images (take glacier area in average as 1 km ²)				
		sensing imagery used, with respect to the total glacier area	Т	20	Glacier outlines mapped with a resolution of 100 m remote sensing images (take glacier area in average as 1 km ²)				
Stability			G		Glacier area at different times extracted independently. No				
			В		cumulative effect of the measurement system should be				
			Т		considered				
Standards and References	 Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014). Paul, F., S.H. Winsvold, A. Kääb, T. Nagler and G. Schwaizer (2016): Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sensing, 8(7), 575; doi:10.3390/rs8070575. Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Vincent, C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745–762. http://doi.org/10.3189/2015JoG15J017 								

Name	Glacier Elevation Change								
Definition	Glacier surface elevation changes from geodetic methods.								
Unit	m y ² Measured in-situ and remotely sensed using geodetic method (Coglev et al. 2011, Zemp et al. 2013)								
Note	Measure	ed in-situ and remo	tely s	ensed us	sing geodetic method (Cogley et al. 2011, Zemp et al. 2013)				
				Requir	ements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	m		G	1	The fine resolution (1-5 m) data be used to extract mass change and dynamic characteristics in area with abnormal topography (quite steep slope, ice fall, calving snout)				
			В	25	A stable size of raster for measuring volume change (Joerg and Zemp, 2014)				
			Т	90	Resolution of SRTM, which most widely used as reference to extract elevation change				
Vertical Resolution	m		G	0.01	Annual mass change of glaciers be evaluated with data with vertical resolution < 0.01 m (e.g. Xu et al., 2019)				
			В	2	annual mean mass change if observed decadal				
			Т	5	The targets for vertical resolutions refer to requirements for differences of digital elevation models (dDEM) in mountainous terrain (e.g. Joerg and Zemp, 2014)				
Temporal Resolution	У		G	1	To evaluate annual mass change and detect the signal of potential abnormal events (e.g. surge)				
			Т	10	The frequency "decadal" refers to the length of the time period needed between two geodetic surveys in order to safely apply a density conversion from volume to mass change (cf. Huss 2013, Zemp et al. 2013)				
Timeliness			G		In view of the low need for temporal sampling, the timeliness is not so important.				
			В						
			Т						
Required	m	Glacier-wide	G						
Measurement Uncertainty	ment (random) nty uncertainty estimate based on a quality assessment of	(random) uncertainty estimate based on a quality assessment of the digital	В	2	Refers to the glacier-wide uncertainty estimate based on a quality assessment of the dDEM product over stable terrain. The value of (2m per decade = $0.2 \text{ m}^{-2} \text{ a}^{-1}$) is set in relation to the corresponding uncertainty requirement of the glaciological method.				
		elevation model differencing product over stable terrain	Т						
Stability	m	Glacier-wide	G						
	/ decade	bias in elevation change measurements over a decade	В	2	The stability of 2m per decade refers to a bias in the glacier-wide change of $0.2 \text{ m m}^{-2} \text{ a}^{-1}$, which is about one third to half of the average annual ice loss rate over the 20th century (Zemp et al. 2015) and is good enough for validation of glaciological series (Zemp et al. 2013)				
Standards	Huss M	(2013) Density a	l ssum	ntions fo	r converting geodetic glacier volume change to mass				
and	change.	The Cryosphere, 7	(3), 8	77-887	. http://doi.org/10.5194/tc-7-877-2013				
References	loera P	$P \subset \& 7 \text{emp} M (2)$	(<i>0)/ 0</i> 2014)	Evaluat	ting Volumetric Glacier Change Methods Using Airborne				
	Laser Solar	canning Data. Geog p://doi.org/10.111	rafisk 1/geo	a Annale a.12036	er: Series A, Physical Geography, 96(2), n/a-				
	Zemp, I Moholdt Vetter, measur	M., Thibert, E., Huse , G., Mercer, A., Ma H., Elvehøy, H., and ement series. The C	s, M., ayer, 0 d And Cryosp	Stumm, C., Joer <u>c</u> reassen, here, 7,	, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S.U., g, P.C., Jansson, P., Hynek, B., Fischer, A., Escher- L.M. (2013): Reanalysing glacier mass balance , 1227-1245, doi:10.5194/tc-7-1227-2013.				
	Zemp, I (2015). Glaciolo	M., Frey, H., Gärtne Historically unprec gy, 61(228), 745-7	er-Roe edent 762. h	r, I., Nu ed globa ttp://doi	ssbaumer, S. U., Hoelzle, M., Paul, F., Vincent, C. Il glacier decline in the early 21st century. Journal of i.org/10.3189/2015JoG15J017				
	Xu, C., measur China.	Li, Z., Li, H., Wang, ements of summer The Cryosphere Dise	, F., & and a cussio	Zhou, F nnual m ns, 1-28	P. (2018). Long-range terrestrial laserscanning lass balances for Urumqi Glacier No. 1, eastern Tien Shan, 3. doi: 10.5194/tc-2018-128.				

8.2.2 ECV Product: Glacier Elevation Change

8.2.3 ECV Product: Glacier Mass Change

Name	Glacier Mass Change								
Definition	Glacier	Mass Changes fro	m glaci	ological n	nethod.				
Unit	kg m⁻²								
Note	Mass ch	nange is measured	l in-situ	ı by the g	laciological method (Cogley et al. 2011, Zemp et al. 2013)				
				Require	ements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution			G B T						
Vertical	m		G						
Resolution			В	0.01	The vertical resolution "0.01 m or 10 kg m ⁻² " refers to the precision of ablation stake and snow pit readings at point locations				
			Т	0.05	Lowest requirement in glaciology				
Temporal Resolution	month		G	1	Monthly observations in melting season to depict melting processes.				
			В	3	Seasonal. The frequency "seasonal to annual" refers to the measurement campaigns which ideally are carried out at the time of maximum accumulation (spring) and of maximum ablation (end of hydrological year)				
			Т	12	Annual. The frequency "seasonal to annual" refers to the measurement campaigns which ideally are carried out at the time of maximum accumulation (spring) and of maximum ablation (end of hydrological year)				
Timeliness	day		G						
			B	265					
			1	365	Ideally, glaciological measurement become available after completion of the annual field campaigns. The WGMS grants a one-year retention period to allow investigators time to properly analyze, document, and publish their data before submitting the data.				
Required	kg	Glacier-wide	G						
Measurement Uncertainty	ainty a ⁻¹ (random) uncertainty estimate including	(random) uncertainty estimate including uncertainties	В	0.2	2-sigma (200 kg m ⁻² a ⁻¹ = 0.2 m w.e. m ⁻² a ⁻¹) refers to the glacier-wide annual balance which is interpolated from the point measurements. The target value was selected based on a review of long-term mass balance measurement series (Zemp et al. 2013).				
		from point measurements , snow, firn and ice density conversions, and extrapolation to glacier-wide results.	Т	0.5	Lowest requirement in glaciology.				
Stability	kg	Glacier-wide	G						
	m ⁻²	bias in mass	В	2	The sheld the same has a set of the set of the				
	/ change deca measurement de s over a decade.	measurement s over a decade.		2	ne stability can be assessed by validation and – if necessary – calibration of a glaciological times series with decadal results from the geodetic method (cf. Zemp et al. 2013). As a rule of thumb, stability is recommended to be better than 300 kg m ⁻² a ⁻¹ (cf. Zemp et al. 2013).				
Standards and References	Zemp, I Moholdt Vetter, measur	M., Thibert, E., Hu t, G., Mercer, A., N H., Elvehøy, H., a ement series. The	ss, M., Iayer, nd And Cryosp	Stumm, C., Joerg, reassen, I ohere, 7,	D., Rolstad Denby, C., Nuth, C., Nussbaumer, S.U., P.C., Jansson, P., Hynek, B., Fischer, A., Escher- L.M. (2013): Reanalysing glacier mass balance 1227-1245, doi:10.5194/tc-7-1227-2013.				
	Zemp, I (2015). Glaciolo	M., Frey, H., Gärtr Historically unpre gy, 61(228), 745	er-Roe cedent -762. h	er, I., Nus ed global ttp://doi.	sbaumer, S. U., Hoelzle, M., Paul, F., Vincent, C. glacier decline in the early 21st century. Journal of org/10.3189/2015JoG15J017				
	Zemp, I sea-leve	M., Huss, M., Thib el rise from 1961 (doi.org/10.1038/	ert, E. to 2016 41586	et al. Glob 5. Nature -019-107	pal glacier mass changes and their contributions to 568, 382–386 (2019). 1-0				

8.3 ECV: Ice Sheets and Ice Shelves

8.3.1 ECV Product: Surface Elevation Change

Name	Surfa	ace Elevation Ch	ange							
Definition	Meas or up	Measurements of the change height above a reference (geoid or ellipsoid) of the snow-air surface or uppermost firn layers.								
Unit	Annu	Annual change in elevations above sea level measured in meters (m y^{-1})								
Note										
				Requ	uirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	m	Spacing of	G							
Resolution		measurements	B	100						
Montion				100	N/A One value new point of Fawth's surface					
Pesolution			G	-	N/A. One value per point of Earth's surface.					
Resolution			Т	-						
				-						
Temporal	month		G	1						
Resolution			В							
			Т	12						
Timeliness			G							
			В							
		_	Т							
Required	m a-	error of	G							
Measurement	-	measured in-	В	0.1						
Uncertainty			I	0.1						
		method and								
		remotely								
		sensed								
		surface								
Chability		elevation	C							
Stability	11 a'	as above	B							
			Т	0.01						
				0.01						
Standards										
and										
References										

8.3.2 ECV Product: Ice Velocity

Name	Ice Velocity											
Definition	Surface	-parallel vecto	or of th	e surfac	e ice flow.							
Unit	m y⁻¹ (a	verage speed	in grid	l cell of s	surface ice flow)							
Note												
		Requirements										
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	m	Grid cell	G	50								
Resolution		size	В	100								
Martical				1000	N/A One value new paint of Farth/a surface							
Perclution			G	-	N/A. One value per point of Earth's surface.							
Resolution			В	-								
			Т	-								
Temporal	month	time	G	1								
Resolution			В									
			Т	12								
Timeliness			G									
			В									
			Т									
Required	m y⁻¹	error of	G	10								
Measurement		measured	в	30								
Uncertainty		using the	1	100								
		aeodetic										
		method										
		and										
		remotely										
		sensed										
		surrace										
Stability	m s ⁻¹	as above	G									
Stability	111.5		B									
			Т	10								
Standards	Hvidbe	rg, C.S., et al.	, 2021									
and	User Re	equirements D) OCUM	ont for th	ne Ice Sheets cci project of FSA's Climate Change Initiative							
References	version	1.5, 03 Aug 2	2012.									

8.3.3 ECV Product: Ice Volume Change

Name	Ice Volume Change								
Definition	Direct measurement of local volume changes or inferred volume change from combining measurements.								
Unit	km ³ y ⁻¹								
Note									
				Requir	ements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km	Size of grid	G						
Resolution		cell	В						
			T	50					
Vertical			G		N/A. One value per point of Earth's surface				
Resolution			В						
			-						
			1						
Temporal	d	Time	G	30					
Resolution			в						
			Т	365					
Timeliness			G						
			В						
			Т						
Required	km³ y⁻¹	error of	G						
Measurement		measured							
Uncertainty		using the							
		geodetic	В						
		method and							
		remotely	-	10					
		sensed	1	10					
		elevation							
Stability	km ³ v ⁻¹	as above	G						
Stubility	Kill y		В						
			Т	1					
Standards									
and									
References									

8.3.4 ECV Product: Grounding Line Location and Thickness

Name	Grounding Line Location and Thickness											
Definition	Location of the line (zone) where ice outflow to an ocean begins to float, and thickness of ice at that location.											
Unit	m (thick	ness), coordir	ates o	f location								
Note												
		Requirements										
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	m		G	100								
Resolution			В									
			Т	1000								
Vertical			G	-	N/A							
Resolution			B	-								
			1	-								
Temporal	У		G									
Resolution			B									
			Т	1								
Timeliness			G									
			В									
			Т									
Required	m		G	1								
Measurement			В									
Uncertainty			Т	10								
Stability	m		G									
			В									
			Т	1								
Standards and References												

8.4 ECV: Permafrost

8.4.1 ECV Product: Permafrost Temperature (PT)

Name	Permafrost Temperature (PT)									
Definition	Permafrost is subsurface earth material that remains continuously at or below 0 °C throughout at least two consecutive years, usually for extended time periods									
	at least two consecutive years, usually for extended time periods.									
	Product definition: Ground temperatures measured at specified depths along profiles.									
Unit	°C Measurements made in boreholes, and usually presented as temperature profiles									
Note	Measurements made in boreholes, and usually presented as temperature profiles.									
	Active	Active layer = surface layer that thaws/freezes every year.								
	ZAA =	ZAA = Zero Annual Amplitude, maximum penetration depth of seasonal variations.								
				Requiremer	ıts					
Item needed	Unit	Metric	[1]	Value Notes						
Resolution	N/A	Spatial distribution of boreholes	G	Regular spacing	It is necessary to fill the spatial gaps in order to calibrate/compare with remote sensing products and climate modeling results.					
			В	Transects	Longitudinal and latitudinal transects allow the assessment of gradients.					
			В	Various settings	Various terrain with different ground/soil conditions (including varying moisture and ice content, thermal properties) and topoclimatic/microclimate conditions (e.g. vegetation, snow cover, slope, aspect). In mountain permafrost, various geomorphological and topo-climatic settings: rock-glaciers, rock walls, in various aspects. Allows for comparison of different reaction to climate change.					
			Т	Characterizat ion of bioclimate zones	Boreholes in continuous, discontinuous, and sporadic permafrost areas. In discontinuous/sporadic permafrost, boreholes must be located in permafrost affected zones. Some boreholes in non-permafrost within permafrost areas can be useful for comparison, model comparison and for understanding evolution of regional permafrost conditions. Location of boreholes is strongly dependent on accessibility of borehole sites.					
Vertical	N/A	Borehole	G	Deeper than	Allows assessment of mid- to long term trends.					
		defined according to	В	Down to ZAA	Allows measurement of the full seasonal variations, and assessment of interannual trend.					
		characteristic permafrost layers	Т	Below permafrost table	Allows calculation of active layer depth and measurement of the temperature of the uppermost permafrost at the permafrost table.					
	m	Sensor spacing along	G	Above ZAA: 0.2	Spacing typically increases with depth. Actual spacing has to be adapted to local conditions					
		borehole for	В		and should be higher on boundary values					
		monitoring /	I	Above ZAA: 0.5	accurate interpolation.					
		measuring interval for	G	Below ZAA: 5						
		manual	В	10 10						
		measurement	Т	Below ZAA > 10						
Temporal Resolution		Sampling interval for	G	Active layer: 1h	Only useful in topmost layers, affected by diurnal variations.					
		continuous monitoring/	В	Active layer: 1d	Assessment of rapid changes due for instance to water infiltration.					
		periodicity for manual	Т	Active layer: 1 month	Sites measured only once a year cannot be used for active layer monitoring					
		measures. Depends on	G	Down to ZAA: 1d	Assessment of rapid variations in terrain with high thermal conductivity.					
		depth, must be more	В	Down to ZAA: 1	Assessment of seasonal variations.					
		frequent in	Т	Down to ZAA: 1 year	Sites with manual measurement are measured only once a year.					

	active layer than below	active layer than below	G	Below ZAA: 1 month	Allows detection of extreme seasonal variations.			
		ZAA	В	Below ZAA: 1 year	Sites with manual measurement are measured only once a year.			
			Т	Below ZAA: 5 years	Sufficient for mid- to long-term trend.			
Timeliness			G	Weekly /real time	Timely reporting, fast intervention in case of problems where possible reduces the risk of large data gaps			
			В	1 year	Most site measurements are retrieved only once a year			
			Т	5 years	Some site measurements are not retrieved every year			
Required	°C	Sensor	G	0.01	Useful for finer definition of freeze/thaw dates			
Measurement Uncertainty		uncertainty	В	0.1	Mean annual trends are often less than 0.1 °C. Reachable with high resolution sensors.			
			Т	0.2	Reachable with most standard sensors.			
Stability	°C	Sensor drift	G	0.01				
		over reference	В	0.05	Should be reached in order to maintain drift below trend.			
period. Assumed drift value of commonly used sensors. Sensor drift correction needs recalibration	Т	0.1	Commonly accepted value based on experience. Calibration of sensor probe is possible in case of manual measurement. It is often impossible for fixed sensor chains, that additionally can be blocked in the borehole due to e.g., shearing. Drift can be minimized by 3 or 4 wire mounting. In situ calibration/correction is possible for sub-surface sensors using "zero curtain".					
Standards and References	Strele Gonça Techr	Streletskiy, Dmitry and Biskaborn, Boris and Smith, Sharon L. and Noetzli, Jeannette and Vieira, Gonçalo and Schoeneich, Philippe (2017) GTN-P Strategy and Implementation Plan 2016-2020. Technical Report. Global Terrestrial Network for Permafrost.						

8.4.2 ECV Product: Active Layer Thickness (ALT)

Name	Active Layer Thickness										
Definition	The surface layer of the ground, subject to annual thawing and freezing in areas underlain by permafrost.										
Unit	cm										
Note	There ar	e three establi	shed n	nethods for me	asuring ALT: mechanical probing, frost tubes and						
	tempera	the result is a depth/thickness value expressed in cm.									
	Satellite based estimates of ALT using Interferometric Synthetic Aperture Radar (InSAR) (Liu et										
	al, 2012, Schaefer et al., 2016) maybe used in the future.										
	-		Requirements								
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	m	Spatial	G	Regular	It is necessary to fill gaps in order to calibrate and						
Resolution		of sites	B	Transacts	modeling results						
			D	Transects							
			Т	sufficient							
				sites to							
				each							
				bioclimatic							
Vertical	cm	Spacing of	G	subzone	Vortical resolution of around temperature concor						
Resolution	CIT	sensors	B	10	spacing for the interpolation						
			Т	20							
Temporal	У		G	1 (at end	ALT is an annual value, which is measured once a year						
Resolution				thawing	measurement (borehole data), ALT is defined at time of						
				period)	maximal penetration of above 0°C temperature.						
			B	1 (
			I	1 (at end of							
				thawing							
The stress			6	period)							
Timeliness	У		B	1	ALT is measured and provided once per year						
			T	1							
Required	cm	mechanical	G	1/5	Mechanical probing/frost tubes/ temperature						
Uncertainty		probing penetration	в		Interpolation from borenoles.						
,		uncertainty	2								
		/ sensor	Т	2/15							
		uncertainty									
Stability	cm		G	1	A common cause of bias is due to surface subsidence						
			T	10	corrected in order to get the true thaw depth.						
					In ice-rich terrain subject to thaw subsidence.						
					monitoring of vertical movements by frost heave in						
					winter and subsidence in summer are of critical						
					measurement towards borehole tube, optical survey or						
					differential GPS technology.						
Standards	Smith, S	haron and Bro	wn, Je	rry (2009) Asse	essment of the status of the development of the standards						
and	for the T	errestrial Esse	ntial C	limate Variable	s - T7 - Permafrost and seasonally frozen ground.						
References	Streletsk	iy, Dmitry and	d Bisk	aborn, Boris a	nd Smith, Sharon L. and Noetzli, Jeannette and Vieira,						
	Technica	I Report. Globa	al Terr	estrial Network	for Permafrost.						
	Liu, L.	Schaefer, K.	Zhano	, T., & Wahr.	J. (2012). Estimating 1992–2000 average active laver						
	thicknes	s on the Alaska	n Nort	h Slope from re	emotely sensed surface subsidence. Journal of Geophysical						
	Research	1: Earth Surfac	e, 117	(F1).							

8.4.3 ECV Product: Rock Glacier Velocity (RGV)

Name	Rock Glacier Velocity (RGV)									
Definition	Global dataset of surface velocity time series measured/computed on single rock glacier units.									
Unit	m v ⁻¹									
Note	m y ⁻⁴ RGV can be measured/computed from terrestrial survey (e.g. repeated GNSS field campaigns, permanent GNSS stations) or remote sensing based approaches (e.g. InSAR, satellite-/air-/UAV- borne photogrammetry). The velocity values can be derived either from an annualized displacement measurement or from an annualized displacement computed from position measurements. RGV is defined for a single rock glacier unit that is expressed geomorphologicaly according to standards. Time series must be distinguished if they come from different units, even in a unique rock glacier system. Several time series can be measured/computed on the same rock glacier unit when derived from different methodologies. Rock glacier characteristics must be described according to the inventorying baseline concepts (Technical definition and standardized attributes of rock glaciers). In particular, the spatial									
				Requi	irements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	Unit	Spatial distribut ion of selected rock	G	Regional coverage	At least 30% of the active talus-connected and/or debris- mantled slope-connected rock glaciers should be selected in a region, which is a part of a mountain range, in order to represent its climatic context. Only possible with remote sensing approaches.					
		glaciers Spatial resolutio n of the measure ment. 1 value per selected rock glacier	В	Multiple sites in a defined regional context	Allows the definition of a regional trend.					
			Т	Isolated site	Continuous time series produced either from in situ measurements or remotely sensed measurements.					
			G	Flow field	Velocity is computed/measured by aggregation over a target area on a rock glacier unit. The aggregation procedure and the target area should be consistent over time. Allows the best representation of the effective movement over the rock glacier unit.					
			В	Few discrete points	Velocity is computed/measured as an aggregation of few measurement points over a target area on a rock glacier unit. The aggregation procedure and the target area should be consistent over time. Allows a better representation of the effective movement over the rock glacier unit.					
		unit	Т	Velocity value at a point	Velocity is computed/measured on a single point. The location should be consistent over time and be spatially representative of the rock glacier unit it is taking part (i.e. located within a recognized moving area).					
Vertical resolution		N/A	G B T							
Temporal Resolution	У	y Frequen cy and	G	1 and 1	Measured/computed once a year. The observation time window is 1 year and consistent over time.					
	Observ tion time window	Observa tion time window	В	1 and <1	Measured/computed once a year. The observation time window is shorter than 1 year (e.g. observation on summer period only). It should not be shorter than 1 month and must be consistent over time. Allows a better representation of the annual behavior.					
			I	2-5 and > 1	Frequency limited by an observation time window of 2-5 years. This time period corresponds to the common periodicity for aerial image coverages, and can be adapted according to regional/national specificities. Longer intervals are admissible for optical images, as well as for reconstructions from archives.					
Timeliness	month		G	3	Minimum time needed for data processing.					
			В							
			Т	12						

Require d Measurement Uncertainty	Require d % Measurement Uncertainty	Relative error of the velocity data	G	5%	Allowed relative error of the velocity data to produce a reliable analysis of long-term temporal changes in rock glacier velocity (RGV). The technique must be chosen in accordance with the absolute value measured/computed on the observed rock glacier and the goal relative error of the velocity data.					
			В	10%						
			Т	20%	Maximal allowed relative error of the velocity data to produce a reliable analysis of long-term temporal changes in rock glacier velocity (RGV). The technique must be chosen in accordance with the absolute value measured/computed on the observed rock glacier and the target relative error of the velocity data.					
Stability	у	Overlappi ng	G	With overla p severa l years	Observation time window, horizontal resolution of the velocity value and methodologies/procedures used to measure/compute velocity value for a single time series must be consistent over time. If one of these elements is changing, two times series must be derived for the selected rock glacier unit. If these two time series have an overlap of several years ensuring consistency, they can be merged into a single time series. The merging procedure must be documented.					
									В	With overlap 1 year
			Т	Withou t overla p	Observation time window, horizontal resolution of the velocity value and methodologies/procedures used to measure/compute velocity value for a single time series must be consistent over time. If one of this element is changing without overlap, two time series must be derived for the selected rock glacier unit.					
Standards and	IPA A	ction Group	Rock gl	aciers invent	cories and kinematics					
References	(nttp: Stand	s://ipa.arctic	portal.c	org/activities	/action- groups)					
		hnical definit	ion and	standardize	d attributes of rock glacier					
	(https rrent_	(https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/CurrentVersion rrent_Baseline_Concepts_Inventorying_Rock_Glaciers.pdf)								
	 Rock glacier velocity (https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/CurrentVersi rrent_ RockGlacierVelocity.pdf 									

9. **BIOSPHERE**

9.1 ECV: Above-Ground Biomass

9.1.1 ECV Product: Above-Ground Biomass (AGB)

Name	Above-Ground Biomass									
Definition	Above-ground biomass is defined as the mass of live and/or dead organic matter in terrestrial vegetation.									
Unit	Mg ha ⁻¹ (dry weight per unit area)									
Note	Definition can vary for different observations/products, considering live and/or dead biomass and different vegetation compartments (woody, branches, and leaves). There are differences in what different satellite and in-situ observations actually measure. A clear definition needs to be provided with each measurement/product, and consistency is to be ensured, and ECV products might include flexibility in information to respond to different definition requirements (i.e. including different estimates for different compartments).									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	m		G	10	This resolution reflects the need to have biomass data at the scale of human-induced disturbance. Suitable resolution can vary by ecozone; biomass is a rapidly varying quantity in space and the variance when moving to more detailed spatial resolutions is getting enormous and very hard to be captured efficiently by varying observation sources, especially for natural and tropical forests. Current understanding practices suggest a horizontal resolution of 0.25 ha (50x50 m) outside the (sub-)tropics and a horizontal resolution of 1 ha (100x100 m) in the tropics for global products. In specific regions of interest and areas of active change (forest/land) higher resolution data can be helpful. Higher quality regional biomass maps can be used for the calibration and validation of global products.					
			Б 	100	and carbon modeling and assessing the impact of climate extremes.					
			Т	1000	This resolution is suitable for global vegetation, carbon and climate models.					
Vertical Resolution			G B T	-	N/A, since ECV products provide estimates as total over a certain area without further vertical discrimination. There is however evolving products on tree/vegetation height and structure that are very related to biomass and could eventually be considered as a "third" dimension for biomass ECV products.					
Temporal Resolution	years	years Changes in biomass stocks (Mg ha ⁻¹) over time (i.e. per year) are important to assess forest	G	0.5	Intra-annual. Biomass data more detailed than annual time steps are of value for assessing and modeling the impact of disturbances such as fires and forest degradation, and for seasonal variability in biomass productivity. There is also interest for more near-real time updates and estimates of forest biomass changes for (local) enforcement and accounting applications.					
			В	1-2	Annual and bi-annual time steps are used by many models and carbon accounting applications requiring biomass data.					
		gains and losses	Т	5-10	Temporal sampling increases are needed to track changes and for long-term biomass trends information every 5-10 years is suitable.					
Timeliness	years		G	<1	Ideally, biomass measurements become available soon after the acquisition of the data for regular updating in regional hotspots, in case of major disturbances and climate extremes etc. Speed of delivery of biomass information might come at the risk that full quality assurance and independent validation cannot be completed in near-real time as well.					

			В	1-5	Global biomass measurements become available at least one (to a few) year(s) after the acquisition of the data and quality processing and ECV product derivation and validation, as well as long-term consistency is to be ensured.
			Т	>5	Regular reprocessing of historical records. Model applications require long-term consistent biomass datasets that should take advantage of the whole historical data record. Improved and reprocessed historical data records consistent with the recent higher quality ECV estimates should be provided on a regular basis.
Required Measurement Uncertainty	% (relative) and Mg (absolute) for different	Relative and absolute bias and confidence interval or RMSE, overall and by biomass class/rang e derived from using multi-date reference data of higher quality	G	10%	
	classes/ra ring		В	20%	
			т	30%	
Stability	ility % (relative) and Mg (absolute), for different biomass classes/ra nges	Relative and absolute bias and confidence interval or RMSE, overall and by biomass class/rang e derived from using	G	5%	As for uncertainty, stability should be assessed using both relative and absolute bias and RMSE. The stability can be assessed by multi-date independent validation/uncertainty assessments. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on biomass changes.
			В	10%	
		multi-date reference data of higher quality	т	20%	
Standards and References					

9.2 ECV: Albedo

9.2.1 ECV Product: Spectral and Broadband (Visible, Near Infrared and Shortwave) DHR & BHR⁶ with Associated Spectral Bidirectional Reflectance Distribution Function (BRDF) Parameters

Name	Spectral and Broadband (visible, near infrared and shortwave) DHR & BHR with Associated Spectral Bidirectional Reflectance Distribution Function (BRDF) parameters (required to derive albedo from reflectance)											
Definition	The la flux. I time a	The land surface albedo is the ratio of the radiant flux reflected from Earth's surface to the incident flux. Each spectral/broadband value depends on natural variations and is highly variable in space and time as a result of terrestrial properties changes, and with illumination conditions.										
Unit	Dime	Dimensionless										
Note	Lengt	h of record: Three	shold: 2	20 years; Targ	et: > 40 years							
				Requirem	lents							
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal Resolution	m		G	10	Due to the heterogeneous nature of terrestrial surfaces, having surface albedo at such scale will increase accuracy for further assimilation of local/regional climate model.							
			в	250	Enable accimilation in earth/climate model							
Vertical			I G	250								
Resolution			B	-	N/A							
Reportation			т	-								
Temporal Resolution	day		G	1	For climate change services. Multi-angular instruments (including geostationary) and/or accumulation of daily data for BRDF parameters retrieval.							
			В									
			Т	10	For assimilation in earth/climate model.							
Therefore			6	-	Same as above as mono-angular							
Timeliness	day		G	1	For climate change services.							
			Т	5	For NPT reanalysis							
Required Measurement Uncertainty	equired easurement ncertainty % 1 standard deviation or error covariance matrix, with associated PDF shape (functional form of	G	3% for values ≥0.05; 0.0015 (absolute value) for smaller values	"A change of 1% to the Earth's albedo has a radiative effect of 3.4 W/m ² " Over snow-free and snow-covered land, climate, biogeochemical, hydrological, and weather forecast models require this uncertainty.								
		estimated	B									
error distribution for the term)	Ι	5% for values ≥0.05; 0.0025 for smaller values	See Ohring, et al. 2005									
Stability	%	A factor of uncertainties	G	< 1 %	Rate of change of surface albedo over the available time period (per decade).							
	dec	demonstrate	В		The required stability is some fraction of the expected							
	ade	demonstrate that the 'error' of the product remains constant over the period, typically a	T	< 1.5 %	signal' (see Ohring, et al. 2005)							

⁶ DHR: Directional Hemispheric Reflectance; BHR: Bidirectional Hemispheric Reflectance.

Boussetta S., Balsamo G., Dutra E., Beljaars A., Albergel C. (2015). Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction, Remote Sensing of Environment, pp. 111-126. DOI:10.1016/j.rse.2015.03.009

Ohring, G., Wielicki, B., Spencer, R., Emery, B., & Datla, R. (2005). Satellite instrument calibration for measuring global climate change: Report of a workshop. Bulletin of the American Meteorological Society, 86(9), 1303-1314.

9.3 ECV: Evaporation from Land

9.3.1 ECV Product: Sensible Heat Flux

Name	Sensible Heat Flux									
Definition	The land surface (terrestrial) sensible heat flux represents the conduction of heat between the									
Deminition	land surface into the atmosphere.									
Unit	W m ⁻²									
Note	Current sensible heat flux datasets based on satellite data are often derived as a residual from the									
Note	enerav	energy balance equation based on estimated latent heat fluxes. Due to their analogous use to that								
	of laten	t heat flux	es by	the clima	te and meteorology community, their user requirements are					
	similar.	imilar. However, giver their lower immediate value for the agricultural and water management								
	commu	nity, some	differ	ences in t	the targeted goals are considered.					
					Requirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km	Size	G	1	Scales needed to achieve a realistic estimation considering land					
Resolution		of grid			cover heterogeneity that may be useful to determine the role of					
		cell			sensible heat fluxes during extreme events (Miralles et al.,					
					2019).					
			В	-	-					
			Т	25	Current spatial resolution of global datasets, which has so far					
					been deemed sufficient for climatological applications.					
Vertical			G	-	N/A					
Resolution			B	-						
				-						
Temporal	n	time	G	T	Sub-daily processes are needed to represent the evolution of					
Resolution					the atmospheric boundary layer during hash droughts or heatwayes (Miralles et al. 2019)					
			в	_						
			т	24	Typical temporal resolution of current global datasets, which					
			•		has so far been deemed sufficient for climatological applications.					
Timeliness	d		G	1	Accurate forecasting of short-term droughts and					
					heatwaves requires data in near real-time (Miralles et al.,					
					2019).					
			в	30	Scales needed to make sensible heat fluxes data useful for					
			2	50	early drought diagnostic or to improve seasonal weather					
					forecasts (expert judgement).					
			Т	365	Current latency for multiple global datasets, which has so far					
					been deemed sufficient for climatological applications.					
Required	%	relativ	G	10	This will involve an improved differentiation among					
Measurement		e root			ecosystems, and enable more efficient weather forecasts of					
Uncertainty		mean		20	extreme events (expert judgement).					
		orror	Б	20	as drought diagnostic (export judgement)					
		enor	т	40	Current level of relative error that has so far been					
				40	deemed sufficient for climatological applications.					
Stability	W m⁻		G	0.015	Due to the scarcity of studies of sensible heat flux trends					
	² vear ⁻				(Siemann et al., 2018), we refer to the same stability					
	1				thresholds as for latent heat fluxes (and in the same units).					
			В	-	-					
	0		Т	0.03						
Standards	Sieman	n, A. L., C	haney	, N. and N	Wood, E. F.: Development and Validation of a Long-Term, Global,					
Roforoncoc	0722 1	2019	е неа	t Flux Da	lasel, J. Climate, 31(15), 6073–6095, dol:10.1175/JCLI-D-17-					
References	0752.1,	2010.								
	Miralles	, D. G., Ge	entine,	P., Sene	viratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks					
			nu nea	1111/pv/	state of the science and current challenges, Ann. N.Y. Acad.					
	50., 8,	SCI., δ, 403-17, 001:10.1111/Nya5.13912, 2019.								

9.3.2 ECV Product: Latent Heat Flux

Name	Latent Heat Flux							
Definition	The land surface (terrestrial) latent heat flux is the energy flux associated with the evaporation occurring over land surfaces, and it may comprise three main sources or individual components:							
	bare soil evaporation (direct evaporation of water from soils), interception loss (evaporation of water from wet canopies) and transpiration (plant water consumption), each of which are							
	considered as sub-products.							
Unit	W m ⁻²							
Note								
Itom needed	Unit Matric [1] Value Notes							
Horizontal	km	Size of	G	0.1	The length scales required to detect spatially beterogeneous			
Resolution		grid cell	U	011	responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018).			
			В	1	Scales needed to achieve a realistic partitioning of evaporation into different components considering land cover heterogeneity (Talsma et al., 2019; Miralles et al., 2016).			
			т	25	Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).			
Vertical			G	-	N/A			
Resolution			В	-				
T	b a	time e	T	-				
Temporal Resolution	hour time	G	1	Water management and agricultural applications require to solve evaporation at timeframes associated with sub- daily irrigation decisions and scheduling (Fisher et al., 2017).				
			В	6	Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer can be resolved (McCabe et al. 2016; Miralles et al., 2016).			
			Т	24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).			
Timeliness	day		G	1	Water management and agricultural applications require data in near real-time (Fisher et al., 2017).			
			В	30	Scales needed to make evaporation data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).			
			Т	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).			
Required Measuremen t Uncertainty	equired % relative root root Incertainty square error	relative root mean square	G	10	This will involve an improved differentiation of water use and water stress among different crops, species, and ecosystems, and will enable more efficient water management (Fisher et al., 2017).			
		error	В	20	Intermediate compromise in which datasets can become useful as drought diagnostic or as a water management asset (expert judgement).			
			Т	40	Current level of relative error (McCabe et al. 2016); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017).			
Stability	W m ⁻² y ⁻¹		G	0.015	Approximately half of the current spread in the multi- datasets estimates of the global trend in evaporation (Zang et al., 2016).			
			В	-	-			
			Т	0.03	Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016).			

Standards and References	Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.
	Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720-25, doi:10.3390/rs10111720, 2018.
	Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing
	data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.
	Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.
	Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.
	Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601– 28, doi:10.3390/rs10101601, 2018.
	Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.3.3 ECV Product: Bare Soil Evaporation

Name	Bare Soil Evaporation								
Definition	The con	The component of the total latent heat flux that corresponds to the direct evaporation of							
	soil moisture into the atmosphere.								
Unit	W m ⁻²								
Note	The requirements are analogous to those of the total latent heat flux, because the applications are the same. Several studies have shown, however, that the accuracy of the latent heat flux can still be adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation, transpiration and interception loss) – see e.g. Miralles et al. (2016). Talsma et al. (2018). For that								
	reason, the uncertainty goals have been subjectively relaxed based on expert judgement.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km	Size of grid	G	0.1	The length scales required to detect spatially heterogeneous responses, particularly if agricultural applications are				
		cell	В	1	Scales needed to achieve a realistic partitioning of evaporation into				
					different components considering land cover heterogeneity (Talsma et al., 2019; Miralles et al., 2016).				
			Т	25	Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Vertical			G	-	N/A				
Resolution			В	-	,				
			Т	-					
Temporal Resolution	emporal h time esolution	time	G	1	Water management and agricultural applications require to solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017).				
			В	6	Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer can be resolved (McCabe et al. 2016; Miralles et al., 2016).				
			Т	24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Timeliness	d		G	1	Water management and agricultural applications require data in near real-time (Fisher et al., 2017).				
			В	30	Scales needed to make bare soil evaporation data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).				
			Т	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Required Measurement	Required % relative root Jncertainty square error	relative root	G	20	This will enable more efficient water management (Fisher et al., 2017).				
Uncertainty		mean square error	В	30	Intermediate compromise in which datasets can become useful as drought diagnostic or as a water management asset (expert judgement).				
			Т	50	Current level of relative error (Talsma et al., 2018); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Stability	W m ⁻² y ⁻¹		G	0.015	Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016).				
			В	-	-				
			Т	0.03	Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016).				

Standards and References	Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.
	Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, doi:10.3390/rs10111720, 2018.
	Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.
	Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.
	Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.
	Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601–28, doi:10.3390/rs10101601, 2018.
	Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.3.4 ECV Product: Interception Loss

Name	Interception Loss									
Definition	The component of the total latent heat flux that corresponds to the precipitation that is intercepted									
	by vegetation and evaporated directly.									
Unit	W m ⁻²									
Note	The req	The requirements are analogous to those of the total latent heat flux, because the applications are								
	the same. Several studies have shown, however, that the accuracy of the latent heat flux can still be									
	adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation,									
	reason the uncertainty goals have been subjectively relayed based on expert judgement									
	reason,	Pequirements								
Item needed	Unit	Metric	[11]	Value	Notes					
Horizontal	km	Size of	G	0.1	The length scales required to detect spatially heterogeneous					
Resolution		grid			responses, particularly if agricultural applications are					
		cell			intended (Fisher et al., 2017; Martens et al., 2018).					
			В	1	Scales needed to achieve a realistic partitioning of evaporation into					
					different components considering land cover heterogeneity (Talsma					
			-		et al., 2019; Miralles et al., 2016).					
			I	25	Current spatial resolution of global datasets (McCabe et al. 2016;					
					climatelogical applications (Fisher et al., 2017)					
Vertical			G	-						
Resolution			B	_						
			Т	-						
Temporal	h		G	1	Water management and agricultural applications require to					
Resolution					solve evaporation at timeframes associated with sub-daily					
					irrigation decisions and scheduling (Fisher et al., 2017).					
			В	6	Intermediate compromise in which sub-daily processes					
				controlling the evolution of the atmospheric boundary layer can						
			т	24	De resolved (McCabe et al. 2016; Miralles et al., 2016).					
				24	has so far been deemed sufficient for climatological applications					
					(Fisher et al., 2017).					
Timeliness	d		G	1	Water management and agricultural applications require data					
					in near real-time (Fisher et al., 2017).					
			В	30	Scales needed to make interception loss needed to (e.g.)					
					improve seasonal weather or hydrological forecasts (expert					
			т	265	Judgement).					
			1	305	been deemed sufficient for climatological applications (Fisher et					
					al., 2017).					
Required	%	relative	G	20	This will enable more efficient water management (Fisher et					
Measurement		root			al., 2017).					
Uncertainty		mean	В	30	Intermediate compromise in which datasets can become useful					
		square			as a water management asset (expert judgement).					
	error	error	Т	50	Current level of relative error (Talsma et al., 2018); this level					
					nas so far been deemed sufficient for climatological applications					
Stability	W m ⁻²		G	0.015	Approximately half of the current spread in the multi-datasets					
Stability	V ⁻¹		U	0.015	estimates of the global trend in evaporation (Zang et al.,					
	,				2016).					
			В	-	-					
			Т	0.03	Current estimates of the trend in the evaporation, but also					
					the estimates of the spread in the estimates of these trends					
					by different datasets (Zhang et al 2016).					
Standards and References	Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.									
--------------------------------	---									
	Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, doi:10.3390/rs10111720, 2018.									
	Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.									
	Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.									
	Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.									
	Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601– 28, doi:10.3390/rs10101601, 2018.									
	Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.									

9.3.5 ECV Product: Transpiration

Name	Transpiration								
Definition	The component of the total latent heat flux that corresponds to the vegetation consumption of water.								
Unit	W m ⁻²								
Note	The requirements are analogous to those of the total latent heat flux, because the applications are the same. Several studies have shown, however, that the accuracy of the latent heat flux can still be adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation, transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For that reason, the uncertainty goals have been subjectively relaxed based on expert judgement.								
					Requirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km	Size of grid cell	G	0.1	Required to detect spatially heterogeneous responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018).				
			В	1	different components considering land cover heterogeneity (Talsma et al., 2019; Miralles et al., 2016).				
			Т	25	Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Vertical Resolution			G B T	-	N/A				
Tomporal	h			-	Water management and agricultural applications require to				
Resolution	Resolution	G		1	solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017).				
		В	6	Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer can be resolved (McCabe et al. 2016; Miralles et al., 2016).					
	т		24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).					
Timeliness	d		G	1	Water management and agricultural applications require data in near real-time (Fisher et al., 2017).				
			В	30	Scales needed to make transpiration data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).				
			Т	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Required Measurement Uncertainty	equired % rela leasurement roo ncertainty me	relative root mean square	G	20	This will involve an improved differentiation of water use and water stress among different crops, species, and ecosystems, and will enable more efficient water management (Fisher et al., 2017).				
		error	В	40	Intermediate compromise in which datasets can become useful as drought diagnostic or as a water management asset (expert judgement).				
			Т	50	Current level of relative error (Talsma et al., 2018); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Stability	W m ⁻ ² year ⁻ 1		G	0.015	Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016).				
			В	-	-				
			Т	0.03	Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016).				

Standards and References	Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.
	Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, doi:10.3390/rs10111720, 2018.
	Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.
	Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.
	Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández- Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.
	Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601– 28, doi:10.3390/rs10101601, 2018.
	Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.4 ECV: Fire

9.4.1 ECV Product: Burned Area

Name	Burned area								
Definition	Burned area is described by a grid where each cell is labelled as burnt if the majority of that cell is classified as containing burned vegetation.								
Unit	m ²								
Note	Requirements								
				Require	ements				
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards				
Horizontal Resolution	prizontal m esolution	Minimum mapping unit to which the BA product refers	G	10	10 m goal reflects the need to better map small and spatially fragmented burned areas that cannot be resolved at lower spatial resolution & reflects the spatial resolution provided by recent (Sentinel-2) and planned (Landsat Next) global coverage EO missions.				
			В	100	Products based on higher resolution have shown higher sensitivity to small fires, even though coarse resolution RS products still miss most small fires (Chuvieco et al. 2022)				
						Τ	1000	1000 m threshold reflects experience using heritage AVHRR LAC data. Burned area products can be aggregated to lower spatial resolution (e.g. 0.25 degree grid cells) for climate modeling applications. Most climate modelers work at coarse resolution grids, 0.25 d is the most common. A recent review of users of RS BA products show that most of them work at this level of detail (https://www.esa-fire- cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, updated by Heil 2019). A review of users of BA products can be found in Mouillot et al. 2014 and Chuvieco et al. 2019.	
Vertical Resolution		G	-	N/A					
			В	-					
		Т	-						
Temporal Resolution	d Minir temp peric which product	Minimum temporal period to which the BA product refers	G	1	Mostly for atmospheric modelers. A questionnaire to atmospheric and carbon modelers done in 2011 suggested 1-2 days (https://www.esa-fire- cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, but it was recently updated to 1 day or even 6 hours: Heil 2019				
			В	10	Based on a questionnaire to atmospheric and carbon modelers done in 2011:				
					https://www.esa-fire- cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, updated in Heil 2019				
			Т	30	Based on the same questionnaire as above				
Timeliness	d	days when the BA	G	10	Based on the same questionnaire as above				
		product is accessible	В	120					
		after fires occurred	Т	360					
Required Measurement Uncertainty	% or m²	Twice the estimated standard	G	10%	Based on the general recommendations of the GCOS programme				
		deviation of the burned	В	20%					
		total as a % of the total	Т	40%					
Stability	Measu	Assessment	G	0	Some potential metrics of stability have been published in				
	omissi on and	or wnether a monotonic trend exists	В	1	international agreement on which one should be more suitable for measuring BA consistency. Padilla et al.,				

	commi ssion over the availa ble time period	based on the slope of the relationship between an accuracy measure and time	Т	2	proposed using the slope b of change of accuracy per year is estimated through a nonparametric linear regression. In addition, the temporal monotonic trend of accuracy (i.e. b different than zero) is tested with the Kendall's tau statistic (Conover 1999; Section 5.4). A statistically significant test result would indicate that accuracy measure m presents temporal instability, as it would have a significant increase or decrease over time.				
Standards and References	Chuvieco Padilla, M for mappi Chuvieco M., & Albo	, E., Mouillot, F., van der Werf, G.R., San Miguel, J., Tanasse, M., Koutsias, N., García, M., Yebra, M., 1., Gitas, I., Heil, A., Hawbaker, T.J., & Giglio, L. (2019). Historical background and current developments ing burned area from satellite Earth observation. <i>Remote Sensing of Environment, 225</i> , 45-64. b, E., Roteta, E., Sali, M., Stroppiana, D., Boettcher, M., Kirches, G., Khairoun, A., Pettinari, L., Franquesa, creal, C. (2022). Building a small fire database for Sub-Spheren Artica from Sortiou 2 bioth resolution							
	images. S Heil, A. (2 https://y	ages. Science of the Total Environment, Volume 845, 157139 eil, A. (2019). ESA CCI ECV Fire Disturbance: D1.1 User requirements document, version 6.0. In. Available from:							
	Mouillot, I burned ar future dev	Mouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., & Chuvieco, E. (2014). Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. <i>International Journal of Applied Farth Observation and Geoinformation</i> 26, 64-79							
	Padilla, M Time Seri	a, M., Stehman, S.V., Litago, J., & Chuvieco, E. (2014). Assessing the Temporal Stability of the Accuracy of a Series of Burned Area Products. <i>Remote Sensing</i> , <i>6</i> , 2050-2068.							
	Roteta, E generatio 17.	., Bastarrika, A., St n of a small fire dat	orm, T., abase fo	& Chuvieco or northern h	, E. (2019). Development of a Sentinel-2 burned area algorithm: nemisphere tropical Africa <i>Remote Sensing of Environment, 222</i> , 1-				

Name **Active Fires** Definition Presence of a temporal thermal anomaly within a grid cell. Those thermal anomalies that are permanent should be linked to other sources of thermal emission (volcanos, gas flaring, industrial or power plants). Generally, the active fire maps are defined by the satellite overpass time (date/hour) when the thermal anomaly was detected. Unit m² Note Requirements **Derivation and References and Standards** Item needed Unit Metric [1] Value Horizon<u>tal</u> Minimum 50 This resolution reflects need to detect small and cool fires m G Resolution mapping (including underground peat fires and fires occurring under forest canopies) and is mostly required by fire unit to which managers and fire extinction services the AF Useful for fire risk assessment and better understanding product В 250 refers of fire risk factors Т 5000 5000m threshold reflects experience using legacy AVHRR GAC data. Most climate modelers work at coarse resolution grids, 0.25 d is the most common. A recent review of users of RS BA products show that most of them work at this level of detail (https://www.esa-firecci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf. updated by Heil 2019). Vertical G _ N/A Resolution В _ т _ Temporal Minimum 5 5 min goal reflects need to detect rapidly moving and min G Resolution short-lived fires. For fire management purposes, active temporal period to fire detection should be done very frequently. Atmospheric modelers also require updated information which the AF product on fire activity refers 2-hour breakthrough reflects need to monitor diurnal в 120 (values active fire variability specified 12-hour threshold reflects experience with legacy fire Т 720 regardless of data sets. Needed by atmospheric and carbon modelers. cloud conditions) Timeliness d Time lapse G 1 Requirement values reflect need to analyse climate anomalies and their effects shortly after fire occurrence. between В 7 satellite A timeliness of 10 minutes (achievable using new overpass geostationary satellites) will be needed by fire managers and AF and atmospheric modelers of smoke impacts on human availability health т 365 Reporting on fire activity Required % Estimation of 95% Based on a questionnaire to atmospheric and carbon G Measurement detection modelers done in 2011: Uncertainty confidence in https://www.esa-fire-В 80% a probability cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, scale updated in Heil 2019 т 75% 0% Stability Measures Assessment G Percentage reflects the relative increase of decrease in of omission of whether a reported global total count of active fire detection В 1% and monotonic gridcells over a 10-year period

9.4.2 ECV Product: Active Fires

Т

trend exists

based on the

slope of the

relationship between an accuracy measure and time

commission

over the

available

time period

2%

Standards and	Giglio, L. et al. (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences. [Online] 118 (1), 317–328.
References	Giglio, L. (2007) Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sensing of Environment. [Online] 108 (4), 407–421
	Heil, A. (2019). ESA CCI ECV Fire Disturbance: D1.1 User requirements document, version 6.0. In. Available from: https://www.esa-fire-cci.org/documents
	Mouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., & Chuvieco, E. (2014). Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. <i>International Journal of Applied Earth Observation and Geoinformation, 26</i> , 64-79.
	Wooster, M. J. et al. (2021) Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment. [Online] 267112694.

9.4.3 ECV Product: Fire Radiative Power (FRP)

Name	Fire Radiative Power (FRP)								
Definition	Energy per unit time released by all fires burning within the pixel footprint. This variable is a function of actual temperature of the active fire at the satellite overpass and the proportion of the grid cell being burned.								
Unit	W (or MW)								
Note									
	Requirements								
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards				
Horizontal Resolution	m	Minimum mapping unit to which the FRP product	G	50 250	Reflects need to characterize small and cool fires including underground peat fires and fires occurring under forest canopies				
		refers	Т	5000	Reflects experience using legacy AVHRR GAC data				
Vertical Resolution			G B T	-	N/A				
Temporal Resolution	min	Minimum temporal period to which the	G	5	5 min goal reflects need to characterize rapidly moving and short-lived fires				
		FRP product refers (values	В	120	2-hour breakthrough reflects need to monitor diurnal active fire variability				
		specified regardless of cloud conditions)	Т	720	12-hour threshold reflects experience with legacy fire data sets				
Timeliness	d	Time lapse between	G	1	For climate applications timeliness is less critical				
		overpass and AF availability	В	7	Requirement values reflect need to analyze climate anomalies and their effects shortly after fire occurrence				
		ŕ	Т	365					
Required Measurement	MW km ⁻² of detector ground	Average deviation	G	0.5	Goal based on need to quantify FRP of small and cool smoldering fires				
Uncertainty	footprint	estimated and	В	1					
		observed FRP	I	2					
		Assessment of	G	0	Percentage reflects the relative increase of				
		whether a	В	1	decrease in reported global mean FRP for total				
		trend exists	Т	2	builled alea over a 10-year period				
Stability	%	based on the slope of the relationship between an accuracy measure and time							
Standards and	Giglio, L. et al	I. (2016) The collect	tion 6 MODI	S active fire	e detection algorithm and fire products. Remote Sensing of				
References	Roberts, G. e (FRP) retrieva	t al. (2018) Investig through simulatio	, ating the im on and meas	pact of over urement. Re	lying vegetation canopy structures on fire radiative power emote Sensing of Environment. [Online] 217158–171. active fires: History and current status, applications and				
	future requirements. Remote Sensing of Environment. [Online] 267112694.								

9.5 ECV: Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)

9.5.1 ECV Product: Fraction of Absorbed Photosynthetically Active Radiation

Name	Fraction of Absorbed Photosynthetically Active Radiation									
Definition	FAPAR is defined as the fraction of photosynthetically active radiation (PAR, i.e. the solar radiation reaching the surface in the 0.4-0.7µm spectral region) that is absorbed by vegetation canopy. Both black-sky (assuming only direct radiation) and white-sky (assuming that all the incoming radiation is in the form of isotropic diffuse radiation) FAPAR values may be considered. Similarly FAPAR can also be angularly integrated or instantaneous (i.e., at the actual sun position of measurement). Leaves-only FAPAR refers to the fraction of PAR radiation absorbed by live leaves only, i.e., contributing to the photosynthetic activity within leaf cells.									
Unit	dimensionless									
Note	FAPAR pla atmosphe Length of	FAPAR plays a critical role in assessing the primary productivity of canopies, the associated fixation of atmospheric CO2 and the energy balance of the surface.								
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	m		G	10	Application at 10 m for Climate Adaptation, CO ₂ fluxnet up scaling. Best practices http://www.qa4ecv.eu/sites/default/files/D4.2.pdf					
			В							
			Т	250	Scale needed for regional and global climate modeling.					
Vertical				-	N/A					
Resolution				-						
				-						
Temporal Resolution	emporal d desolution		G	1	When assimilated by model, this value corresponds to the climate model temporal resolution. In order to derive a better phenology accuracy.					
		В								
			Т	10	When using for crops or ecosytems modeling, or Land Surface / Earth System Model evaluation.					
Timeliness	d		G	1	In order to be useful in climate change services.					
			В	5	In order to be useful in environmental change services. Can be longer (~months) for historic climate/environmental change assessments.					
			Т	10	In order to be useful in environmental change services.					
Required Measurement Uncertainty	quired asurement certainty % 1 standard deviation or error covariance matrix, with associated PDF shape (functional	1 standard deviation or error covariance matrix, with associated PDF shape (functional form of	G	5% for values ≥0.05; 0.0025 (absolut e value) for smaller values	The values were assessed through physical link between FAPAR with the LAI and surface albedo uncertainties.					
		estimated	В							
	estimated error distribution for the term)	error distribution for the term)	Т	10% for values >0.05; 0.005 (absolut e value) for smaller values	The threshold value of uncertainty was assessed through physical link between FAPAR with the LAI and surface albedo uncertainties.					
Stability	%	Assessmen t of whether a	G	<1.5	'The required stability is some fraction of the expected signal' (see Ohring, et. al. 2005.). In the case that we have data over 10 years (= one decade)					

	trend exists with respect to reference data, taker into the definition, i.e. white-	1		N=10 and U=5% Assuming U constant along the period It means S=SQRT(N*U^2)/N=SQRT(N)*U/N S= $0.3*U = 0.31 * 10/100.0 = 1.5 \%$ This number should be smaller than expected FAPAR trend.
	sky or	В		
	black-sky and total versus `green foliage'.	Т	<3	Same as above with U = 10%
Standards and References				

9.6 ECV: Land Cover

9.6.1 ECV Product: Land Cover

Name	Land Cover								
Definition	Land cove global clin	r is defined a nate application	s the ons	observed (b	io)-physical cover on the Earth's surface for regional and				
Unit	Primary units are categories (binary variables such as forest or cropland) or continuous variables classifiers (e.g. fraction of tree canopy cover in percent). Secondary outputs include surface area of land cover/use types and land cover/use changes (in ha). UN/FAO Land Cover Classification System (LCCS) + C3/C4 sub-classification should be used with cross-walking tables to other common classifications.								
Note	Land cove	r can be varia	able i	n time due to	b land changes and phenology.				
These second of	Unit	Matria	54.3	Requir	ements				
Horizontal Resolution	m	Metric	G	100-300	Most climate users are satisfied by a horizontal resolution of 300m if they can be provided for long time spans.				
			В	300-1 km	Suitable for regional (climate) modeling.				
			Т	>1 km	Suitable for global (climate) modelers.				
Vertical Resolution			G B T	-	N/A, since ECV products provide estimates as total over a certain area with further vertical discrimination. There is currently no consideration of the third dimension for land ECV products though some of the definitions (such as forests) often use, among others, minimum height criteria.				
Temporal Resolution	month	time	G	1	Monthly. Allows regrowth, phenology, changes in water extent related to seasonality to be detected.				
			В	12	Yearly. Inter-annual changes can be detected.				
			Т	60	Every 5 years. Suitable scale for longer-term mapping, related to broader land cover change dynamics.				
Timeliness	Fimeliness month		G	3	Seasonal. Ideally, land cover data become available soon after the acquisition of the data but quality processing and ECV product derivation and accuracy assessment, as well as, long-term consistency is to be ensured to track changes and trends. These frequent changes may be relevant for land managers who can react quickly to changes.				
			В	12	Annual and bi-annual reporting applications. Policy makers will be able to develop and assess policies based on regular updates and observed changes.				
			Т	60	Every 5 years. Suitable for longer-term mapping, related to broader land cover change dynamics.				
Temporal Extent (Time span)	year		G	>50	Historic changes which most users are interested in are captured. Only be achieved with modeling approaches using non-earth observation data sources (i.e. historical maps)				
			В	10-50	Historic changes can be assessed for the Earth observation era.				
			Т	0 (one time only)	Only current and potentially future data are available, but this is useful for those who require current status products, for example for modelling, and static assessments.				
Required Measurement Uncertainty	% for accuracy and errors of omission	Primary: overall map accuracy and orrors of	G	5	For reporting purposes, this would allow sufficient accuracy, where all classes have high accuracies. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.				
	commissi on and hectares for area estimates incl. 95	errors of omission and commissi on for individual land	В	20	For other uses, this would be sufficient – it would be expected that some classes would have higher accuracy – for example confusion between built-up and forest would be lower, but confusion between agriculture and bare might be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.				

2022 GCOS ECVs Requirements, updated in 2025

	% confidenc e intervals	cover categorie s and types of change (incl. confidenc e interval). Secondar y: bias for area estimates (incl. confidenc e intervals)	Т	35	This threshold would be suitable for maximum commission/omission error for individual categories. Overall accuracy might be expected to be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.
Stability	% incl. 95 % confide nce interval s	Primary: errors of omission and commissio n for individual land cover categories and types of change (incl. confidenc e interval)	G B T	5 15 25	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi- date ECV data is to provide information on changes and trends.
Standards and References					

9.6.2 ECV Product: Maps of High-Resolution Land Cover

Name	Maps of High-Resolution Land Cover								
Definition	High Resolution Land Cover is the observed (bio)-physical cover on the Earth's surface for monitoring changes at local scales (suitable for adaptation and mitigation).								
Unit	Primary units are categories (binary variables such as forest or cropland) or continuous variables classifiers (e.g. fraction of tree canopy cover in percent). Secondary outputs include surface area of land cover/use types and land cover/use changes (in ha).								
Note	It can also be variable in time due to land changes and phenology.								
				Requirem	ents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	m	Size of grid cell	G	<10	Suitable for local land managers - specifically for targeted applications in climate change mitigation and adaptation. Small features such as green spaces within cities are visible and changes to water extent (in particular change in river courses) also become visible at this resolution. More detailed land cover descriptions are more.				
			В	10-30	Can identify human induced land change at regional levels. Most features of interest are visible, and broad changes captured.				
			Т	30-100	Broad landscape typologies and changes across landscapes are visible, so suitable for landscape management.				
Vertical Resolution			G	-	N/A, since ECV products provide estimates as total over a certain area with further vertical discrimination.				
			В	-	dimension for land ECV products though some of the definitions (such as forests) often use, among others,				
			Т	-	a minimum height criteria.				
Temporal Resolution	month		G	1	Monthly. Allows regrowth, phenology, changes in water extent related to seasonality to be detected.				
			B T	12 60	Yearly. Inter-annual changes can be detected Every 5 years. Suitable scale for longer-term mapping, related to broader land cover change dynamics.				
Timeliness	month		G	3	Seasonal. Ideally, land cover data become available soon after the acquisition of the data but quality processing and ECV product derivation and accuracy assessment, as well as, long-term consistency is to be ensured to track changes and trends. These frequent changes may be relevant for land managers who can react quickly to changes.				
			В	12	Annual and bi-annual reporting applications. Policy makers will be able to develop and assess policies based on regular updates and observed changes.				
			Т	60	Every 5 years. Suitable scale for longer-term mapping, related to broader land cover change dynamics.				
Temporal Extent (Time span)	Y		G	30-50	Historic changes which most users are interested in are captured. Only be achieved with modeling approaches using non-earth observation data sources (i.e. historical maps) – where more recent high resolution data sources (Landsat, Sentinel) are not available.				
			В	10-30	Historic changes can be assessed for the Earth observation data which are required at this resolution.				
			Т	0 (one time only)	Only current and potentially future data are available, but this is useful for those who require current status products, for example for modelling, and static assessments.				
Required Measurement Uncertainty	% for accuracy and errors of omission and	Primary: overall map accuracy and errors	G	5	For reporting purposes, this would allow sufficient accuracy, where all classes have high accuracies. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover				

	commissio n and hectares for area estimates incl. 95 % confidence intervals	of omission and commission for individual land cover categories and types of change (incl. confidence interval). Secondary: bias for area estimates (incl. confidence intervals)	Т	20 35	For other uses, this would be sufficient – it would be expected that some classes would have higher accuracy. For example confusion between built-up and forest would be lower, but confusion between agriculture and bare might be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product. This threshold would be suitable for maximum commission/omission error for individual categories. Overall accuracy might be expected to be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.
Stability	% incl. 95 % confidence intervals	Primary: errors of omission and commission for individual land cover categories and types of change (incl. confidence interval)	G B T	5 15 25	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
Standards and References					

9.6.3 ECV Product: Maps of Key IPCC Land Classes, Related Changes and Land Management Types

Name	Maps of Key IPCC Land Classes, Related Changes and Land Management Types										
Definition	Land cover classes to be used for the estimation of GHG emissions and removals following the IPCC guidelines.										
Unit	classifiers (e.g. fraction of tree canopy cover in percent). Secondary outputs include surface area of land cover/use types and land cover/use changes (in ha).										
Note	It can also be variable in time due to land changes and phenology. Crucially, this table refers to change products.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	m / degree	Size of grid cell	G	10-300	This would allow finer detail to be observed, and for land management to be assessed at smaller units.						
			В	300-	For most climate users, 300 m is sufficient.						
			Т	1000-1 degree	For modelling for example at the global scale, this resolution is sufficient. More detailed land cover descriptions are more targeted for regional applications in climate change mitigation and adaptation purposes.						
Vertical Resolution			G	-	N/A, since ECV products provide estimates as total over a certain area with further vertical discrimination. There is currently no consideration						
			В	-	of the third dimension for land ECV products though some of the definitions (such as forests)						
			Т	-	often use, among others, minimum height criteria.						
Temporal Resolution	month		G	1	Monthly. Allows regrowth, phenology, changes in water extent related to seasonality to be detected.						
			В	12	Yearly. Inter-annual changes can be detected. Suitable for most international and national policy reporting cycles.						
			т	60	Every 5 years. Suitable for longer-term mapping, related to broader land cover change dynamics.						
Timeliness	month		G	1	Monthly. Ideally, land cover data become available soon after the acquisition of the data but quality processing and ECV product derivation and accuracy assessment, as well as, long-term consistency is to be ensured to track changes and trends.						
			В	12	Yearly. Policy makers will be able to develop and assess policies based on these changes.						
			Т	60	Every 5 years. Suitable for longer-term mapping, related to broader land cover change dynamics.						
Temporal Extent	У		G	>100	For modelling over longer histories historic data are required.						
(Time span)			В	50	Near historic changes can be assessed.						
			Т	30	Only current maps using the current generation of satellites are used.						
Required Measurement Uncertainty	% for accuracy and errors of omission and commissi on and hectares	Primary: overall map accuracy and errors of omission and commission for individual land cover categories	G	5	For reporting purposes, this would allow sufficient accuracy, where all classes have high accuracies.						

	for area estimates incl. 95 % confidenc e intervals	and types of change (incl. confidence interval). Secondary: bias for area estimates (incl. Confidence intervals)	В	15	For other uses, this would be sufficient – it would be expected that some classes would have higher accuracy -for example confusion between built-up and forest would be lower, but confusion between agriculture and bare might be higher.
			Т	25	This threshold would be suitable for maximum commission/omission error for individual categories. Overall accuracy might be expected to be higher.
Stability	% incl. 95 % confidenc	Primary: errors of omission and commission for individual land cover categories and types of change (incl. confidence interval)	G B T	5 15 25	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
Standards and References					

9.7 ECV: Land Surface Temperature

9.7.1 ECV Product: Land Surface Temperature (LST)

Name	Land Surface Temperature										
Definition	Land Surface Temperature (LST) is a measure of how hot or cold the surface of the Earth would feel										
	to the touch. When derived from radiometric measurements of ground-based, airborne, and										
	spacebo	rne remote sensi	ng inst	ruments,	, LST is the aggregated radiometric surface temperature of						
	the ensemble of components within the sensor field of view.										
Unit	K (average over grid cell)										
Note	From a o	From a climate perspective, LST is important for evaluating land surface and land-atmosphere									
	exchang	e processes, cons	strainii	ng surfac	e energy budgets and model parameters, and providing						
	observa	tions of surface te	empera	ature cha	nge both globally and in key regions.						
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km	Size of grid	G	< 1	Reflect the primary application of the climate users in						
Resolution		cell	в	< 1 1	are model evaluation, evanetranspiration/vegetation or						
			1	T	crop monitoring and urban climate all of which may						
					quite feasibly require data with a spatial resolution of 1						
					km or better. Only polar orbiting satellites can currently						
					provide data at these resolutions.						
Vertical	N/A		G								
Resolution			B								
Temponel	b		I C	. 1	Only Coostationary data can provide data at these						
Pesolution	n		G	< <u>1</u>	only Geoslationary uata can provide data at these						
Resolution			D	1	contrast polar orbiting satellites cover the whole globe						
					but are restricted to day/night temporal resolution.						
			Т	6 Very nearly met	Very nearly met by day/night temporal resolution						
					from polar orbiting satellite, which satisfies 70% of						
					climate users in survey.						
Timeliness	d	1		_	A survey of 80 non-climate users for timeliness from the						
			В	2	ESA DUE GIODI emperature Project revealed the a						
			1	30	and a "breakthrough" of 48 hours for long-term data						
					records.						
Required	К	An estimate	G	< 1	This is the required total uncertainty per pixel combining						
Measurement		of the	В	< 1	the four groups of uncertainty components: random,						
Uncertainty		expected	Т	< 1	locally correlated atmospheric, locally correlated						
		spread of the			surface, and large scale systematic. There is a requirement for knowledge on correlation length scales						
		nossible			requirement for knowledge on correlation length scales						
		values									
Stability	К/	Assessment of	G	0.1	For climate modeling community long-term product						
	decade	whether a	В	0.2	stability is noted as high priority. Temporal stability of						
		monotonic	Т	0.3	the LST products need to be sufficient for global and						
		trend exists			regional trends in LST anomalies to be calculated.						
		to around-									
		based Fiducial									
		Reference									
		Measurements									
		or related ECV									
		datasets (such									
		as near-									
		temperature)									

Standards and References	Bulgin, C., & Merchant, C. (2016). DUE GlobTemperature Requirements Baseline Document. Ghent, D., Veal, K., Trent, T., Dodd, E., Sembhi, H., and Remedios, J. (2019). A New Approach to Defining Uncertainties for MODIS Land Surface Temperature. Remote Sensing, 11, 1021. doi: 10.3390/rs11091021					
	Good, E. J., Ghent, D. J., Bulgin, C. E., & Remedios, J. J. (2017). A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series. Journal of Geophysical Research: Atmospheres, 122(17), 9185-9210. doi:10.1002/2017JD026880					
	LST CCI (2018) User Requirements Document, Reference LST-CCI-D1.1-URD -i1r0					
	LST CCI (2019) End-to-End ECV Uncertainty Budget Document, Reference LST-CCI-D2.3-E3UB - i1r0					
	Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G., Mittaz, J., Poulsen, C., Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva, V. F., and Wagner, W. (2017). Uncertainty information in climate data records from Earth observation. Earth System Science Data, 0, 511-527.					

9.7.2 ECV Product: Soil Temperature⁷

Name	Soil Temperature										
Definition	Soil temperature at different depth.										
Unit											
Note	The soil temperature at different depth could represent the thermal energy. The standard depths for soil temperature measurements are 5, 10, 20, 50 and 100 cm below the surface according to the CIMO guide (0cm is an additional in CMA); additional depths may be included. Secondly, LST is more difficult to measure using in situ thermometers or thermocouples s. The temperature sensor is difficult to fit tightly to the ground and remains stable. In the case of precipitation, the fitness will change and cause unstable measurement results. The position of the temperature sensor needs to be adjusted manually. Infrared temperature sensors are expensive, and require representative fields of view to that observed from satellites, so it is challenging to create a global network to represent all possible land covers. Soil temperature is easy to measure using thermometer (0/5/10 cm) or temperature sensor (5/10/20/50/100 cm).										
				Requ	irements						
Item needed	Unit	Metric		Value	Notes						
Horizontal	кт	longitude	G	50							
Resolution			в	120 279	For the CCN, the herizontal distance between two networks						
			I	139-278	For the GSN, the horizontal distance between two network stations should not be less than the length of 2.5 degrees of longitude at that location (278 km at the equator). For stations beyond 60 degrees latitude (north or south) the minimum distance is fixed at the length of 2.5 degrees of longitude at 60 degrees latitude (139 km). Consequently, the minimum spacing varies from 278 km at the equator to 139 km in the polar regions.						
Vertical	cm		G	0, 5, 10, 20,	The standard depths for soil temperature measurements are						
Resolution	on		50, 100, 180		 5, 10, 20, 50 and 100 cm below the surface; additional depths may be included. LST is important for the satellite observation. So zero depth could be included. Goal: At the depth of 180cm the temperature is useful for long term climate monitor and prediction. Breakthrough: Automatic Weather Station observe could observe the soil temperature at these depths. Threshold: The thermometer can be used at this depth. Suitable for observing stations without automatic weather stations. 						
			В	0, 5, 10, 20, 50, 100							
			Т	0, 5, 10, 20							
Temporal	h		G	3							
Resolution			В	6	Regarding surface synoptic observations: the main standard times shall be 0000, 0600, 1200 and 1800 UTC. The intermediate standard times shall be 0300, 0900, 1500 and 2100 UTC. Every effort should be made to obtain surface synoptic observations four times daily at the main standard times, with priority being given to the 0000 and 1200 UTC observations required for global exchanges.						
			Т	24							
Timeliness	h		G	3							
			Т	48							
Required	К		G	0.1							
Measurement			P	0.2							
Uncertainty			В	0.2							
(2-sigma)			Т	0.2							
Stability			G								
			В								
			Т								
Standards	WMO	Guide to Me	eteorol	ogical Instrume	nts and Methods of Observation (WMO-No.8)						
References			5 Surf	ace Network (G	SN) and GCUS Upper-AIR NETWORK (GUAN) (GCUS-						
References	144) (WMU/ID No. 1558)										

⁷ Soil Temperature is a new ECV product temporary included under the ECV Land-Surface Temperature. His positioning will be subjected to evaluation of TOPC Panel and GCOS Steering Committee.

9.8 ECV: Leaf Area Index

9.8.1 ECV Product: Leaf Area Index (LAI)

Namo									
Definition			(LAI)		econychem is defined as one half of the total green last area nor				
Definition	unit horizontal ground surface area and measures the area of leaf material present in the specified environment (projection to the underlying ground along the normal to the slope).								
Unit	m ² m ⁻²								
Note	Effective Leaf Area Index is the LAI value that would produce the same indirect ground measurement as that observed assuming foliage distribution (LAIeff=LAItrue x canopy clumping index).								
	The con informa appropr	version of tion about iate spatia	data m the str al resolu	easurement ucture and a utions.	s to true values is an essential step and requires additional architecture of the canopy, e.g. gap size distributions, at the				
	Leaf Are intercep	ea Index c otion, as w	ontrols ell as p	important m hotosynthes	ass and energy exchange processes, such as radiation and rain is and respiration, which couple vegetation to the climate system.				
	Length	of record:	Thresh	old: 20 years	s; Target: >40 years.				
Requirements									
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	m		G	10	For (e.g.) climate adaptation and agricultural monitoring				
Resolution					Best practices published here: http://www.qa4ecv.eu/sites/default/files/D4.2.pdf				
			В	100					
			т	250	For regional and global climate modeling				
Vertical				-	N/A. In theory, a vegetation canopy can be stratified into various				
Resolution				_	layers to describe its vertical structure in a discrete way. However				
				-	actual methods of LAI observation, e.g. optical sensors, can only				
					requirements for vertical resolution are set				
T			6	-					
Resolution	emporal d Resolution		G	1	model temporal resolution (to derive a better phenology accuracy).				
			В						
			Т	10	When using for crops or ecosystems modeling, or Land Surface / Earth System Model evaluation.				
Timeliness	d		G	1	For climate change services.				
			т	5	historic climate/environmental change assessments.				
Pequired	% or	1 sigma	G	10% for	One standard deviation or error covariance matrix with associated				
Measurement Uncertainty	Required % or 1 sig Measurement m ² m ⁻² Jncertainty	r 1 sigma G n ⁻²	G	values $\geq 0.5;$ 0.05 (absolute value) for	PDF shape (functional form of estimated error distribution for the term). The goal value of uncertainties were assessed through literature review of impact of climate change on LAI using various earth system models (see Mahowald, et. al., 2016; https://www.earth-systedynam.pet/7/211/2016/)				
				smaller	They show impact on LAI deviation at clobal scale using various				
				values	RCP scenarios. If we take the models ensemble results, we demonstrate that the uncertainties should be less than Delta_LAI \sim 0.20 for a 2 deg. C deviation for an annual average LAI, that can be approximated to \sim 1.5.				
					This means that the uncertainties should be smaller than 10% (~0.20/1.87*100.).				
			В						
			Т	20% for values ≥0.5; 0.1 (absolute value) for smaller	Same as above but with Delta_LAI ~0.25				
				values					

			-							
Stability	m² m²²	A factor of	G	<3%	The unit is rate of change of LAI over the available time period.					
	, decade	es to			The required stability is some fraction of the expected signal' (see Obring et al. 2005)					
		demonstrat			"It may represent a requirement on the extent to which the error					
		'error' of			of the product remains constant over a long period, typically a					
		the product remains			decade or more. It can be defined by the mean of uncertainties over a month".					
		constant over at least a			In the case that we have data over 10 years (= one decade) N=10 and U=10\%					
		decade			S=sqrt(sum(U^2))/N.					
					Assuming U constant along the period					
					It means S=SQRT(N*U^2)/N=SQRT(N)*U/N S=0.3*U = 0.31 * 10/100.0 = 3 %					
					This number should be smaller than expected LAI trend.					
					Ref: Jiang et al. 2017.					
			в							
			т	<6%	Same as above but with threshold uncertainty					
			'	<070	Sume as above but with threshold uncertainty.					
Standards	Fang,	H., Baret,	F., Plur	nmer, S., & roducts vali	Schaepman-Strub, G. (2019). An overview of global leaf area					
References	https:/	//doi.org/1	1003, p	/2018RG00	0608					
	Bouss	etta S., Ba	lsamo (G., Dutra E.,	Beljaars A., Albergel C. (2015) Assimilation of surface albedo and					
	vegeta	ation state	s from s	satellite obse	ervations and their impact on numerical weather prediction,					
	Remot	e Sensing	of Envi	ronment, pp	0. 111-126. DOI:10.1016/j.rse.2015.03.009					
	Fernar N La	ndes, R., P no Milao	lummer raze R	r, S., Nightin LeBlanc S	Igale, J., Baret, F., Camacho, F., Fang, H., Garrigues, S., Gobron, Meroni M. Martinez, B. Nilson, T. Pinty, B. Pisek, 1					
	Sonne	ntag, O., \	/erger,	A., Welles, J	I., Weiss, M., & Widlowski, J.L. (2014). Global Leaf Area Index					
	Product Validation Good Practices. Version 2.0. In G. Schaepman-Strub, M. Román, & J. Nickeson									
	(Eds.), Best Practice for Satellite-Derived Land Product Validation (p. 76): Land Product Validation Subaroup (WGCV/CEOS), doi:10.5067/doc/ceoswacy/lpv/lai.002									
	C. Y. J	Jiang, Y. Ryu, H. Fang, R. Myneni, M. Claverie, Z. Zhu, (2017). Inconsistencies of interannual								
	variab 4146.	ility and tr	ends in	long-term s	atellite leaf area index products. Glob. Chang. Biol. 23, 4133-					
	Ohring	g, G., Wieli	cki, B.,	Spencer, R.	, Emery, B., & Datla, R. (2005). Satellite instrument calibration for					
	measu Societ	ring globa	l climat	e change: R	eport of a workshop. Bulletin of the American Meteorological					
	Society, 86(9), 1303-1314.									

9.9 ECV: Soil carbon

9.9.1 ECV Product: Carbon in Soil

Name	Carbon in Soil									
Definition	% of or	% of organic carbon in the topmost 30 cm and sub-soil 30-100cm.								
Unit	% of mass									
Note										
				Re	quirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km	Grid cell	G	20						
Resolution		size	В	100						
			Т	1000						
Vertical			G	-	N/A					
Resolution			В	-	N/A					
			Т	-	N/A					
Temporal	у	Time	G	1	Consistent with LUC					
Resolution		between	В	5						
		estimates	т	10						
Timeliness	v		G	1						
	'		B	1						
			Т	1						
Required	%		G	10						
Measurement			B	10						
			Т	10						
(2-Sigilia)	0/		C	1						
Stability	70		G	1						
			Б	1						
	N			1						
Standards	Nachtergaele, F.H., van Velthuizen, L. Verekst, and D. Widberg, Eds., 2012: Harmonized World Soil									
References	Wieder et al 2013 Nature Climate Change:									
	Oertel e	Wieder et al. 2013, Nature Climate Change;								
	Anan et	al., 2013, na	n et al	2013	Todd-Brown et al., 2014.doi:10.5194/bg-11-2341-2014					
	Todd-Br	own et al., 20)14. dc	oi:10.519	4/ba-11-2341-2014					
	1000-DIOWH Et al., 2014, 001.10.3134/Dg-11-2341-2014									

Name	Mineral Soil Bulk Density										
Definition	Bulk density of dry soil averaged over the topmost 30 cm and topmost 1 m.										
Unit	Kg m ⁻³										
Note											
				Red	quirements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km	Grid cell	G	0.1	For permafrost						
Resolution		Size	В	1							
			Т	20							
Vertical			G	-	N/A						
Resolution			В	-	N/A						
			Т	-	N/A						
Temporal	У	Time	G	5							
Resolution		between	В	10							
		estimates	Т	20							
Timeliness	у		G	1							
			В	1							
			Т	1							
Required	%		G	10							
Measurement			В	10							
(2-sigma)			Т	10							
Stability			G	1							
			В	1							
			Т	1							
Standards and References	Nationa Permafr The Nat	l Research Co ost and Relate ional Academi	uncil (ed Eco ies Pre	2014). O logical Ch ss. https	pportunities to Use Remote Sensing in Understanding naracteristics: Report of a Workshop. Washington, DC: ://doi.org/10.17226/18711						

9.9.2 ECV Product: Mineral Soil Bulk Density

9.9.3 ECV Product: Peatlands

Name	Peatlands									
Definition	Depth o	of peat measur	red on	a regular	r grid (where peat exists).					
Unit	M This provides the geographic systemt of postlands and their denth									
Note	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	m	Grid cell	G	20						
Resolution		size	В	100						
			Т	1000						
Vertical	m		G	0.1						
Resolution			В	0.5						
			Т	1						
Temporal	у	Time	G	5						
Resolution		between	В	10						
		estimates	Т	20						
Timeliness	у		G	1						
			В	1						
			Т	1						
Required	%		G	10						
Measurement			В	10						
(2-sigma)			Т	10						
Stability	%		G	1						
			В	1						
			Т	1						
Standards and References	Minasny Lilja, B. Caten, I review.' Hugelius Olefeldt stocks c Nationa	r, B., O. Berglu Malone, A. Mo D. Thompson, Earth-Scienc G., J. Loisel M. Packalen, f peatland car Academy of S	und, J. Bratne C. Tuv e Revie , S. Ch M. B. rbon a Science	Connolly ey, P. Roi re and W. ews 196. nadburn, Siewert, nd nitrog es 117(34	 r, C. Hedley, F. de Vries, A. Gimona, B. Kempen, D. Kidd, H. udier, S. O'Rourke, Rudiyanto, J. Padarian, L. Poggio, A. ten Widyatmanti (2019). "Digital mapping of peatlands - A critical doi: 10.1016/j.earscirev.2019.05.014 R. B. Jackson, M. Jones, G. MacDonald, M. Marushchak, D. C. Treat, M. Turetsky, C. Voigt and Z. Yu (2020). "Large en are vulnerable to permafrost thaw." Proceedings of the 4): 20438-20446. doi: 10.1073/pnas.1916387117 					

10. ANTHROPOGENIC

10.1 ECV: Anthropogenic Greenhouse Gas Fluxes

10.1.1 ECV Product: Anthropogenic CO₂ Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use

Name	Anthropogenic CO ₂ Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use											
Definition	Anthropogenic long-cycle C emissions are mainly originating from combustion of fossil fuels, and for about 10% also from non-combustion sources, such as cement production, ferrous and non-ferrous metal production processes, urea production, agricultural liming and solvent use.											
Unit	Mg CO ₂ y ⁻¹	for the region										
Note	This corresponds to UNFCCC reporting of anthropogenic emissions from non-LULUCF sources by country											
		Requirements										
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal Resolution	Country- level	As defined by UNFCCC	G	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines							
			В									
			Т	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines							
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal Resolution	У		G	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines							
			В									
			Т	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines							
Timeliness	У		G	Within 1.25 years	UNFCCC Inventory Reporting Guidelines							
			В									
			Т	Within 1.25 years	UNFCCC Inventory Reporting Guidelines							
Required	%	Twice the	G	Globally: 5%	IPCC 2006 Guidelines							
Measurement		estimated	_	Nationally: 10%								
Uncertainty		standard	B									
		deviation of the total as a % of the total	deviation of the total as a % of the total	I	Globally: 10% Nationally: 30%	IPCC 2006 Guidelines						
Stability			G		Follow times series consistency in 2006							
			В		Guidelines and 2019 Refinement							
			Т									
Standards and References	IPCC 2006 UNFCCC)	Guidelines (O	ptional	: 2019 Refinement of the G	uidelines; National inventory reports to							

10.1.2 ECV Product: Anthropogenic CH₄ Emissions from Fossil Fuel, Waste, Agriculture, Industrial Processes and Fuel Use

Name	Anthropogenic CH4 Emissions from Fossil Fuel, Waste, Agriculture, Industrial Processes and Fuel Use								
Definition	Anthropogenic CH ₄ emissions are mainly originating from fermentation processes in waste (landfills), manure, enteric fermentation, but also from fossil fuel extraction, transmission and distribution and use, and industrial processes.								
Unit	Mg CH ₄ y ⁻¹ for the region								
Note	This corresponds to UNFCCC reporting of anthropogenic emissions of methane, except from wetlands								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	Country- level	Country by country	G	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines				
			В						
			Т	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines				
Vertical				-	N/A				
Resolution	lesolution	В	-						
		Т	-						
Temporal	y time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory					
Resolution		В							
		Т	1	IPCC 2006 Guidelines, UNFCCC Inventory					
Timeliness	y time	G	within 1.25 years	UNFCCC Inventory Reporting Guidelines					
			В						
			Т	within 1.25 years	UNFCCC Inventory Reporting Guidelines				
Required Measurement Uncertainty	% Twice the estimated standard deviation of the total as a % of the total	G	20%	IPCC 2006 Guidelines					
		В							
		Т	40%	IPCC 2006 Guidelines					
Stability			G		Follow times series consistency in 2006 Guidelines				
			Т						
Standards and References	IPCC 2006 Guidelines (Optional: 2019 Refinement of the Guidelines; National inventory reports to UNFCCC)								

10.1.3 ECV Product: Anthropogenic N₂O Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use, Indirect from N-Related Emissions/Depositions

Name	Anthropogenic N ₂ O Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use, Indirect from N-Related Emissions/Depositions									
Definition	Anthropogenic N ₂ O emissions are mainly originating from fuel combustion, industry, agriculture, waste, products use (including indirect emissions from leaching and run-off, from NOx emissions).									
Unit	Mg N ₂ O y^{-1} for the region									
Note	This corr	This corresponds to UNFCCC reporting of anthropogenic emissions of nitrous oxide								
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	Country -level	Country by country	G	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines					
			В							
			Т	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines					
Vertical			G	-	N/A					
Resolution		В	-							
			Т	-						
Temporal	Temporal y time Resolution	time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines					
Resolution			В							
			Т	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines					
Timeliness	ness y time	G	within 1.25 years	UNFCCC Inventory Reporting Guidelines						
		В								
			Т	within 1.25 years	UNFCCC Inventory Reporting Guidelines					
Required	%	Twice the	G	40%	IPCC 2006 Guidelines					
Measurement		estimated	В							
Uncertainty		standard deviation of the total as a % of the total	Т	80%	IPCC 2006 Guidelines					
Stability			G		Follow times series consistency in 2006 Guidelines					
			В		and 2019 Refinement					
			Т							
Standards and References	IPCC 2006 Guidelines (Optional: 2019 Refinement of the Guidelines; National inventory reports to UNFCCC)									

10.1.4 ECV Product: Anthropogenic F-Gas Emissions from Industrial Processes and Product Use

Name	Anthropogenic F-Gas Emissions from Industrial Processes and Product Use								
Definition	F-Gas emissions are anthropogenic and mainly originating from chemical industrial processes and F- gas-related product use. The different F-gases have different, all very high global warming								
	potentials.								
Unit	Mg CO ₂ eq y^{-1} for the region								
Note	This corresponds to UNFCCC reporting of anthropogenic emissions of fluorinated gases (HFC, PFC and SF ₆) aggregated according to the GWP as agreed by the UNFCCC								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	Country -level	Country by country	G	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines				
			В						
			Т	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines				
Vertical			G	-	N/A				
Resolution	tion	В	-						
			Т	-					
Temporal	mporal y time	time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory				
Resolution		В	_						
Timeliness		time		L within 1 25 years	IPCC 2006 Guidelines, UNFCCC Inventory				
Timeliness	neliness y time	G	within 1.25 years	UNFECC Inventory Reporting Guidelines					
		B							
			Т	within 1.25 years	UNFCCC Inventory Reporting Guidelines				
Required	%	Twice the	G	10%	IPCC 2006 Guidelines				
Measurement		estimated	В						
Uncertainty		standard deviation of the total as a % of the total	Т	50%	IPCC 2006 Guidelines				
Stability			G B T		Follow times series consistency in 2006 Guidelines and 2019 Refinement				
Standards and References	IPCC 2006 Guidelines (Optional: 2019 Refinement of the Guidelines; National inventory reports to UNFCCC)								

10.1.5 ECV Product: Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition – National

Name	Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition – National								
Definition	National estimates derived from highly resolved GHG emission gridmaps (modelled output, using proxy for the spatial distribution at fine-scale resolution).								
Unit	kg CO_2 eq m ⁻² s ⁻¹								
Note	Total estimated fluxes by coupled data assimilation/ inverse models at a national scale. This includes both "anthropogenic" and "natural" emissions and removals.								
			R	equirements					
Item needed	Unit Metric [1] Value Notes								
Horizontal Resolution	km	Size of country	G B	10					
			I	100					
Resolution			B	-	Layers:1- surface; 2- stack height (between 100m and 300m); 3- cruise height (10km) and 4-				
			Т	-	supersonic height (15 km).				
Temporal Resolution	у	Time	G B	1	IPCC 2019, UNFCCC Inventory Guidelines				
			T	1	IPCC 2019, UNFCCC Inventory Guidelines				
Timeliness	y Time	G	within 1.25 years	To allow comparison with estimates made following the UNFCCC Inventory Reporting Guidelines					
			В						
		Т	within 1.25 years	To allow comparison with estimates made following the UNFCCC Inventory Reporting Guidelines					
Required		Twice the	G	10%	IPCC 2019				
Measurement		estimated	В						
Uncertainty		standard deviation of the total as a % of the total	Т	30%	IPCC 2019				
Stability			G						
			B						
Chandauda	IDCC 20	10 vefinement bits	1		en in /nublic/2010/f/index.html \/elume_T				
and	Chapter	6.10.2 Comparisons	with a	tmospheric mea	.or.jp/public/2019ff/index.ntml Volume 1, surements				
References	GAW Report No. 245, An Integrated Global Greenhouse Gas Information System (IG3IS) Science Implementation PlanEC-CO2 report, Pinty et al., 2017: An operational anthropogenic CO ₂ emissions monitoring & verification support capacity - Baseline requirements, Model components and functional architecture, European Commission Joint Research Centre, EUR 28736 EN, https://doi.org/10.2760/39384								

10.1.6 ECV Product: Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition – Continental

Name	Total Estimated Fluxes by Coupled Data Assimilation / Models with Observed								
Definition	GHG emission aridmans (modelled output, using provy for the spatial distribution)								
Unit	c_{10} constant grantaps (modelled output, using proxy for the spatial distribution).								
Note	Total estimated fluxes by coupled data assimilation/ inverse models at a continental scale. This includes both "anthropogenic" and "natural" emissions and removals.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km	Size of continents	G B	1000					
			Т	10000					
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	emporal y time esolution	time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines				
Resolution		B							
			T	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines				
Timeliness	meliness y time	time	G	within 1.25 years	To allow comparison with estimates made following the UNFCCC Inventory Reporting Guidelines				
			В						
		Т	within 1.25 years	To allow comparison with estimates made following the UNFCCC Inventory Reporting Guidelines					
Required	% Twice the	G	10%	IPCC 2019					
Measurement		estimated	В						
Uncertainty	standard deviation of the total as a % of the total	Т	25%	IPCC 2019					
Stability			G		IPCC 2019				
			В						
			Т		IPCC 2019				
Standards and References	IPCC 2019 refinement https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html Volume I, Chapter 6.10.2 Comparisons with atmospheric measurements. GAW Report No. 245, An Integrated Global Greenhouse Gas Information System (IG3IS) Science Implementation Plan.								

10.1.7 ECV Product: Anthropogenic CO₂ Emissions/Removals by Land Categories

Name	Anthropo	anic CO2 Emis	sions	/Removals by Land	Categories					
Definition	Short and long cycle C emissions from land use land-use and forestry (including carbon stock									
Demition	gains and losses of biomass burning, disease, harvest, net deforestation).									
Unit	Mg of CO2 y^{-1} (for the region)									
Note	This corresponds to UNFCCC reporting of anthropogenic emissions and removals from LULUCF									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	Country-	As defined	G	By country/region	IPCC 2006 Guidelines, UNFCCC Inventory					
Resolution	level	by UNFCCC	В	, ,, ,, ,	, , ,					
			Т	By country/region	IPCC 2006 Guidelines, UNFCCC Inventory					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	У	Time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory					
Resolution	Resolution		В							
			Т	1	IPCC 2006 Guidelines, UNFCCC Inventory					
Timeliness	y Time	Time	G	within 1.25 years	UNFCCC Inventory Reporting Guidelines					
			D							
			в	within 1 DE verse	UNECCC Inventory Departing Cuidelines					
			1	within 1.25 years	ONFECC Inventory Reporting Guidelines					
Required	% or Gg	Twice the	G	15% or 300Gg,	IPCC 2006 Guidelines					
Measuremen t Uncertainty	estimated standard deviation of	estimated		whichever is largest						
concertainty		deviation of	в							
		the total as a	Т	20% or 400Ga -	IPCC 2006 Guidelines					
		% of the		whichover is						
		total or mass		largost						
		of CO2		laigest						
Stability			G							
			В							
			Т							
Standards	IPCC 2003	3 GPG, IPCC 200	6 Guid	lelines; UNFCCC Natio	nal Inventory Reports					
and										
References										

10.1.8 ECV Product: High-Resolution Footprint Around Point Sources

Name	High-Resolution Footprint Around Point Sources							
Definition	Spatially resolved GHG emission plume around local source.							
Unit	ppm (total column-averaged dry air mole fraction of CO ₂)							
Note								
	Requirements							
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal	km	distance	G	1				
Resolution			В					
			Т	2				
Vertical			G	-	N/A			
Resolution			В	-				
Townseed	b	Depent time		-	IDCC 2010 Definement			
Percelution	n	Repeat time	G	4	IPCC 2019 Reinement			
Resolution		observations	D T	144 (6 days)				
Timeliness	wooks	00301 400013	G	144 (0 udys)				
Thickness	Weeks		0	1				
			В					
			Т	4				
Required	ppm	Twice the	G	1	IPCC 2006 Guidelines			
Measurement		estimated standard deviation of	_					
Uncertainty			В					
			Т	5	IPCC 2006 Guidelines			
		the total						
Stability			G					
			В					
			Т					
Standards	ESA Mis	sion requireme	nts do	cument of Carbons	Sat, of CO ₂ M Sentinel (EOP-SM/3088/YM-ym, 82			
References	pp., htt	tps://esamultir	neala	.esa.int/docs/Eart	nobservation/CO2M_MRD_V2.0			
Kererences	_issue	120130351°bu)					
	Referen	ces in Janssens	-Maer	hout et al., 2020:	Toward an Operational Anthropogenic CO2 Emissions			
	Monitor	ing and Verifica	tion S	upport Capacity, B	AMS, https://doi.org/10.11/5/BAMS-D.19-001/.1			

10.2 ECV: Anthropogenic Water Use

10.2.1 ECV Product: Anthropogenic Water Use

Name	Anthropogenic Water Use									
Definition	Volume of water used by country, by sector – agricultural, industrial and domestic.									
Unit	Volume of water used by country. $Gm^3 y^{-1}$									
Note	AQUAS	STAT contains	s estin	nates of water	use by county.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal		By country	G		Medium-scale watersheds					
Resolution			В		Country, plus major watersheds					
			Т		Country					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	mont		G	1						
Resolution h		В								
			Т	12						
Timeliness			G							
			В							
			Т							
Required	%		G	10						
Measurement			В							
(2-sigma)			Т	20						
Stability			G							
			В							
			Т							
Standards and References										

GCOS Secretariat Global Climate Observing System c/o World Meteorological Organization 7 *bis,* Avenue de la Paix P.O. Box No. 2300 CH-1211 Geneva 2, Switzerland Tel: +41 22 730 8067 Email: gcos@wmo.int